Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Αναπαράσταση χώρου πεποιθήσεων κατάστασης για στατιστικούς διαχειριστές διαλόγου με χρήση βαθέων αποκωδικοποιητών

Lygerakis Fotios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/CD0054AA-4840-4F5F-90CB-9A7020612EE5
Έτος 2019
Τύπος Διπλωματική Εργασία
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Φώτιος Λυγεράκης, "Αναπαράσταση χώρου πεποιθήσεων κατάστασης για στατιστικούς διαχειριστές διαλόγου με χρήση βαθέων αποκωδικοποιητών", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2019 https://doi.org/10.26233/heallink.tuc.82700
Εμφανίζεται στις Συλλογές

Περίληψη

Τα στατιστικά συστήματα διαλόγου (ΣΣΔ) έχουν αποδείξει τη τεράστια δυναμική τους τα τελευταία χρόνια. Ωστόσο, η έλλειψη αποτελεσματικών και ισχυρών αναπαραστάσεων των πεποιθήσεων κατάστασης (ΠΚ) τους αποτρέπει από το να αποκαλύψουν το πλήρες εύρος της δυναμικής τους. Επιπλέον, υπάρχει μεγάλη ανάγκη για αυτόματες τεχνικές αναπαράστασης των ΠΚ που να μεταφέρονται εύκολα σε πολλούς τομείς εφαρμογής (domains) , οι οποίες θα αντικαταστήσουν τις παλιές τεχνικές που βασίζονται σε κανόνες. Για την αντιμετώπιση των παραπάνω προβλημάτων, εισάγουμε μια νέα χρήση του Autoencoder (AE). Στόχος μας είναι να αποκτήσουμε μια χαμηλής διάστασης και συμπαγή, αλλά ισχυρή αναπαράσταση του χώρου των ΠΚ. Διερευνούμε τη χρήση του πυκνού ΑΕ, καθώς και του ΑΕ αποθορυβοποίησης (denoising) (DAE), του αραιού AE (SAE) και του DΑΕ διακύμανσης (variational) (VDAE). Οι προσεγγίσεις αποθορυβοποίησης είναι ιδιαίτερα χρήσιμες όταν υπάρχουν αλλοιώσεις στο διάνυσμα των ΠΚ σε περιβάλλοντα με υψηλή αβεβαιότητα. Επίσης, διερευνούμε τις δυνατότητες της Παραμετροποίησης Ανεξάρτητου Τομέα Εφαρμογής (DIP), μιας ανεξάρτητης από το πεδίο εφαρμογής, εναλλακτικής λύσης για την αναπαράσταση των ΠΚ , καθώς επίσης και του συνδυασμού της DIP με διαφορετικούς τύπους AE, για μια πιο συμπαγή και ισχυρή αναπαράσταση αυτής. Η αναπαράσταση του χώρου ΠΚ που λαμβάνουμε από τους διάφορους ΑΕ χρησιμοποιείται από δύο υπερσύγχρονους αλγόριθμους ενίσχυσης μάθησης (EM) για την εκμάθηση των πολιτικών διαλόγου˙ τον μη παραμετρικό GP-SARSA και τον παραμετρικό LSPI. Δείχνουμε ότι η προτεινόμενη προσέγγιση επιτυγχάνει υψηλότερες επιδόσεις πολιτικής σε σύγκριση με το πλήρες διάνυσμα ΠΚ, καθώς και την κυριαρχία του VDAE ως το καλύτερο εργαλείο αναπαράστασης, χρησιμοποιώντας προσομοιωμένους χρήστες στο εργαλείο PyDial. Συγκεκριμένα, ο VDAE σε συνδυασμό με τον LSPI παρουσίασε την καλύτερη απόδοση από όλους τους άλλους συνδυασμούς τεχνικών αναπαράστασης και σε οποιοδήποτε τομέα εφαρμογής, ακόμη και στα περιβάλλοντα με την υψηλότερη αβεβαιότητα.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά