Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Function approximation for medical image registration

Spanakis Konstantinos, Mathioudakis Emmanouil, Tsiknakis Manolis N., Kampanis, Nikolaos A, Marias Kostas

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/FA552A66-7ABF-4616-BD60-CCA2391A2F28-
Αναγνωριστικόhttps://doi.org/10.1109/TSP.2018.8441336-
Αναγνωριστικόhttps://ieeexplore.ieee.org/document/8441336-
Γλώσσαen-
Μέγεθος4 pagesen
ΤίτλοςFunction approximation for medical image registrationen
ΔημιουργόςSpanakis Konstantinosen
ΔημιουργόςΣπανακης Κωνσταντινοςel
ΔημιουργόςMathioudakis Emmanouilen
ΔημιουργόςΜαθιουδακης Εμμανουηλel
ΔημιουργόςTsiknakis Manolis N.en
ΔημιουργόςKampanis, Nikolaos Aen
ΔημιουργόςMarias Kostasen
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηEvolutionary computation has been widely used in intensity-based medical image registration due to its ability to deal with the large number of the local minima which the conventional optimization methods fail. Despite this successful application, they still have certain disadvantages, the most important being the need to do repetitive evaluations of the similarity function for all the candidate solutions, which increases the duration of the image registration process. This disadvantage is more pronounced when the function we seek to optimize is computationally expensive or when the search-space increases due to the large number of degrees of freedom. In this paper, we present a new approximation using a surrogate model for image registration that significantly reduces the time needed for image registration without any quality compromise of the results. The results of the experiments show a decrease of duration up to 40.03%. en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2019-06-07-
Ημερομηνία Δημοσίευσης2018-
Θεματική ΚατηγορίαFunction Approximationen
Θεματική ΚατηγορίαHarmony Searchen
Θεματική ΚατηγορίαMachine Learningen
Θεματική ΚατηγορίαMutual Informationen
Θεματική ΚατηγορίαRigid Image Registrationen
Βιβλιογραφική ΑναφοράC. Spanakis, E. Mathioudakis, M. Tsiknakis, N. Kampanis and K. Marias, "Function approximation for medical image registration," in 41st International Conference on Telecommunications and Signal Processing, 2018, pp. 124-127. doi: 10.1109/TSP.2018.8441336en

Υπηρεσίες

Στατιστικά