Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Simulation-based evaluation and optimization of control strategies in buildings

Kontes Georgios, Giannakis Georgios, Sánchez Victor, De Agustin-Camacho Pablo, Romero-Amorrortu Ander, Panagiotidou Natalia, Rovas Dimitrios, Steiger Simone, Mutschler Christopher, Gruen Gunnar

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/A949E50D-C745-4A35-A9FF-ED897E882C1E-
Αναγνωριστικόhttps://doi.org/10.3390/en11123376-
Αναγνωριστικόhttps://www.mdpi.com/1996-1073/11/12/3376-
Γλώσσαen-
Μέγεθος23 pagesen
ΤίτλοςSimulation-based evaluation and optimization of control strategies in buildingsen
ΔημιουργόςKontes Georgiosen
ΔημιουργόςΚοντες Γεωργιοςel
ΔημιουργόςGiannakis Georgiosen
ΔημιουργόςΓιαννακης Γεωργιοςel
ΔημιουργόςSánchez Victoren
ΔημιουργόςDe Agustin-Camacho Pabloen
ΔημιουργόςRomero-Amorrortu Anderen
ΔημιουργόςPanagiotidou Nataliaen
ΔημιουργόςRovas Dimitriosen
ΔημιουργόςΡοβας Δημητριοςel
ΔημιουργόςSteiger Simoneen
ΔημιουργόςMutschler Christopheren
ΔημιουργόςGruen Gunnaren
ΕκδότηςMultidisciplinary Digital Publishing Instituteen
ΠερίληψηOver the last several years, a great amount of research work has been focused on the development of model predictive control techniques for the indoor climate control of buildings, but, despite the promising results, this technology is still not adopted by the industry. One of the main reasons for this is the increased cost associated with the development and calibration (or identification) of mathematical models of special structure used for predicting future states of the building. We propose a methodology to overcome this obstacle by replacing these hand-engineered mathematical models with a thermal simulation model of the building developed using detailed thermal simulation engines such as EnergyPlus. As designing better controllers requires interacting with the simulation model, a central part of our methodology is the control improvement (or optimisation) module, facilitating two simulation-based control improvement methodologies: one based in multi-criteria decision analysis methods and the other based on state-space identification of dynamical systems using Gaussian process models and reinforcement learning. We evaluate the proposed methodology in a set of simulation-based experiments using the thermal simulation model of a real building located in Portugal. Our results indicate that the proposed methodology could be a viable alternative to model predictive control-based supervisory control in buildings.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2019-05-24-
Ημερομηνία Δημοσίευσης2018-
Θεματική ΚατηγορίαData-driven controlen
Θεματική ΚατηγορίαEnergyplusen
Θεματική ΚατηγορίαModel predictive control in buildingsen
Θεματική ΚατηγορίαMulti-criteria decision analysisen
Θεματική ΚατηγορίαReinforcement learningen
Θεματική ΚατηγορίαSimulation modelen
Θεματική ΚατηγορίαClimate controlen
Θεματική ΚατηγορίαClimate modelsen
Βιβλιογραφική ΑναφοράG. D. Kontes, G. I. Giannakis, V. Sánchez, P. De Agustin-Camacho, A. Romero-Amorrortu, N. Panagiotidou, D. V. Rovas, S. Steiger, Ch. Mutschler and G. Gruen, "Simulation-based evaluation and optimization of control strategies in buildings," Energies, vol. 11, no. 12, Dec. 2018. doi: 10.3390/en11123376en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά