Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Πιστοποίηση αριθμητικού σχήματος διακριτοποίησης υψηλής τάξεως για την επίλυση των 3-Δ εξισώσεων Euler

Angelopoulos Dimitrios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/36A9C901-77FC-4599-AADA-8107F14F02F6
Έτος 2019
Τύπος Μεταπτυχιακή Διατριβή
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Δημήτριος Αγγελόπουλος, "Πιστοποίηση αριθμητικού σχήματος διακριτοποίησης υψηλής τάξεως για την επίλυση των 3-Δ εξισώσεων Euler", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2019 https://doi.org/10.26233/heallink.tuc.81821
Εμφανίζεται στις Συλλογές

Περίληψη

In this study, the application and evaluation of a high-order spatial and time discretization method for the numerical solution of 2-dimensional Euler equations is reported. An alternative high-order approach enhances the in-house academic solver, named EU2, employing the dimensionless Euler equations, discretized with a node-centered finite volume method on triangular unstructured girds, to simulate inviscid compressible flows. Most methodologies that have been developed during the past years, e.g. the discontinuous Galerkin and K-exact scheme, necessitate a non-trivial increase of the DoFs (Degrees of Freedom) and consequently a considerable increase of computational resources. Moreover, major modifications to existing CFD codes are required for their implementation. The adopted high-order scheme is based on the incorporation of additional high order terms to the reconstructed nodal values, used for the computation of the inviscid fluxes. The required higher-order derivatives are computed with the corresponding lower-order ones on the existing DoFs via a successive differentiation technique. As a result, the connectivity requirements are restricted to the first neighbouring points, overcoming the inherent constraint of the unstructured solvers to retrieve information from a wider computational stencil. The aforementioned technique was incorporated with a variable extrapolation numerical scheme, named U-MUSCL, which closely resembles the traditional MUSCL one, and was coupled with a high-order time discretization that employs a Strong Stability Preserving Runge-Kutta method (SSPRK). To assess the effectiveness of the aforementioned numerical scheme, the EU2 solver is used against a benchmark problem having analytic solution. A satisfactory agreement is obtained, demonstrating the proposed scheme’s potential to increase the solution’s accuracy for a given grid density. Furthermore, a corresponding high-order formulation is extended to a 3-dimensional numerical fluid model. An elaborate construction method of 3-d computational meshes for various grid types is presented in detail for future exploitation on the numerical evaluation of equivalent 3-d high-order schemes.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά