URI | http://purl.tuc.gr/dl/dias/70300711-F354-4B42-A1C9-8959A19DDB36 | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.81593 | - |
Γλώσσα | el | - |
Μέγεθος | 60 σελίδες | el |
Τίτλος | Πρόβλεψη μετοχών σε πραγματικό χρόνο | el |
Τίτλος | Real time stock forecasting | en |
Δημιουργός | Moulios Argyris | en |
Δημιουργός | Μουλιος Αργυρης | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Deligiannakis Antonios | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Δεληγιαννακης Αντωνιος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Garofalakis Minos | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Γαροφαλακης Μινως | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Chalkiadakis Georgios | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Χαλκιαδακης Γεωργιος | el |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Electrical and Computer Engineering | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
Περίληψη | “Big Data analytics” is the method by which we look at big data to reveal hidden
patterns, incomprehensible relationships, and other important data that can be used to solve decision-making problems. In recent years there has been an increasing interest in big data due to their rapid growth and since it covers different application domains.
An important area of Big Data application is in the financial system and more
specifically in the field of stock prediction. In this case, the data streams can be
massive and continuous. Many times in stock forecasting, it is crucial the data to be processed and draw conclusions in real-time in order to end up with useful forecasts which can provide us with in time solutions in decision-making problems. The aim of this diploma thesis is to identify time-delayed correlated pairs among thousands of shares, in a real-time and distributed way, in order to extract information that will be used in their prognosis. More specifically, we are interested in extracting information about the course of shares that affects the course of others, the time lag and the correlation degree in this phenomenon. To achieve this goal, it is critical to ensure the scalability of the techniques we are about to use, in order to maintain a reasonable time for the results outputs, despite the increasing volume of incoming data.
Therefore, we implemented the algorithm covering locality sensitive hashing (CLSH) without false negatives, on top of the distributed system Apache Storm, which we will analyze and present as well as the experimental results of this study. | en |
Περίληψη | Με τον όρο “Big Data analytics” αναφερόμαστε στη μέθοδο κατά την οποία μελετούμε μεγάλα δεδομένα (Big Data) με σκοπό την εύρεση και ανάλυση κρυφών μοτίβων, ακατανόητων σχέσεων και άλλων σημαντικών δεδομένων τα οποία χρησιμοποιούνται για την επίλυση προβλημάτων που απαιτούν λήψεις αποφάσεων. Τα τελευταία χρόνια έχει εκδηλωθεί ένα αυξανόμενο ενδιαφέρον για τα μεγάλα δεδομένα εξαιτίας της ραγδαίας ανάπτυξης τους και λόγω του ότι καλύπτουν διάφορους τομείς εφαρμογών. Ένας σημαντικός τομέας εφαρμογής των Big Data είναι στο χρηματοοικονομικό σύστημα και πιο συγκεκριμένα στην προσπάθεια της πρόγνωσης μετοχών. Στη συγκεκριμένη περίπτωση η ροή των δεδομένων μπορεί να είναι εκτεταμένη και διαρκής. Πολλές φορές κατά την πρόγνωση μετοχών είναι επιτακτική η ανάγκη για επεξεργασία των δεδομένων και εξαγωγή συμπερασμάτων σε πραγματικό χρόνο ώστε οι προβλέψεις να είναι χρήσιμες, παρέχοντας τη δυνατότητα έγκαιρης λήψης αποφάσεων. Στόχος αυτής της διπλωματικής εργασίας είναι ο εντοπισμός χρόνο-καθυστερημένων συσχετίσεων ζευγών μεταξύ χιλιάδων μετοχών, σε πραγματικό χρόνο και κατανεμημένα, ώστε να εξάγουμε πληροφορίες οι οποίες θα χρησιμοποιηθούν στην πρόγνωση αυτών. Πιο συγκεκριμένα ενδιαφερόμαστε για την εξαγωγή πληροφοριών σχετικά με την πορεία μετοχών η οποία επηρεάζει την πορεία άλλων, τη χρονική καθυστέρηση καθώς και το βαθμό συσχέτισης αυτού του φαινομένου. Για την επίτευξη του άνωθεν στόχου, κρίσιμης σημασίας είναι η κλιμακωσιμότητα των τεχνικών που θα χρησιμοποιήσουμε ώστε να είναι εφικτή η διατήρηση μιας λογικής χρονικής απόδοσης ως προς την εξαγωγή αποτελεσμάτων, παρά την αύξηση του όγκου των εισερχόμενων δεδομένων. Για το λόγο αυτό υιοθετήσαμε και εφαρμόσαμε τον αλγόριθμο covering locality sensitive hashing (CLSH) χωρίς false negatives, πάνω στο κατανεμημένο σύστημα Apache Storm, τον οποίο θα αναλύσουμε και θα παρουσιάσουμε καθώς και τα πειραματικά αποτελέσματα που τελικά προέκυψαν σε αυτή τη μελέτη.
| el |
Τύπος | Διπλωματική Εργασία | el |
Τύπος | Diploma Work | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by-nc/4.0/ | en |
Ημερομηνία | 2019-04-22 | - |
Ημερομηνία Δημοσίευσης | 2019 | - |
Θεματική Κατηγορία | Covering locality sensitive hashing | en |
Θεματική Κατηγορία | Πρόβλεψη μετοχών | el |
Θεματική Κατηγορία | Stock forecasting | en |
Θεματική Κατηγορία | Real time stream processing | en |
Θεματική Κατηγορία | Apache storm | en |
Βιβλιογραφική Αναφορά | Αργύρης Μούλιος, "Πρόβλεψη μετοχών σε πραγματικό χρόνο", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2019 | el |
Βιβλιογραφική Αναφορά | Argyris Moulios, "Real time stock forecasting", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2019 | en |