Χριστίνα Στυλιανουδάκη, "Προσδιορισμός νιτρορύπανσης υπόγειων υδάτων στην ευρύτερη περιοχή του Ασωπού ποταμού με χρήση ANNs", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2019
https://doi.org/10.26233/heallink.tuc.81255
Στην παρούσα διπλωματική εργασία επιχειρείται η χρήση τεχνητού νευρωνικού δικτύου για την εκτίμηση των συγκεντρώσεων νιτρικών ιόντων (NO3-) σε υπόγεια ύδατα.Η νιτρορύπανση προκαλείται με την άμεση ή έμμεση απόρριψη στο υδάτινο περιβάλλον αζωτούχων ενώσεων και οδηγεί στην πρόκληση βλαβών στην ανθρώπινη υγεία και στην υποβάθμιση των υδατικών οικοσυστημάτων. Στα υπόγεια ύδατα, εμφανίζεται κυρίως με τη μορφή αθροιστικής συσσώρευσης νιτρικών, τα οποία σε ορισμένες περιπτώσεις φθάνουν σε επίπεδα που είναι απαγορευτικά για τη χρήση του νερού για σκοπούς ύδρευσης. Ως οριακή τιμή έχει καθορισθεί από την Ελληνική και Διεθνή νομοθεσία η συγκέντρωση των 50 mg/l, ωστόσο ακόμα και σε μικρότερες συγκεντρώσεις (μεγαλύτερες από 25 mg/l) δημιουργείται προβληματισμός για μακροχρόνια χρήση του νερού για πόση (ypeka, 2018).Η μοντελοποίηση της νιτρορύπανσης των υπόγειων υδάτων με τις κλασικές αριθμητικές μεθόδους μπορεί να καταστεί ιδιαίτερα δύσκολη διαδικασία και απαιτεί πολύ καλές γνώσεις της γεωμορφολογίας της περιοχής, η οποία εν γένει χαρακτηρίζεται από ετερογένεια (Tanty & Desmukh, 2015; Gutiérrez et al, 2018). Επιπλέον, οι τεχνικές ανίχνευσης και μέτρησης των συγκεντρώσεων των νιτρικών ιόντων στο νερό χαρακτηρίζονται από υψηλό κόστος και υψηλές απαιτήσεις σε χρόνο, ενώ οι φορητές συσκευές που χρησιμοποιούνται δεν είναι ικανοποιητικής ακρίβειας. Ακόμη, στις διάφορες μεθόδους που χρησιμοποιούνται για τη χημική ανάλυση του νερού, η ανίχνευση των νιτρικών επηρεάζεται από την ύπαρξη άλλων ιόντων, κυρίως των Cl- (Alahi & Mukhopadhyay, 2018). Το γεγονός αυτό οδηγεί σε σημαντική υποβάθμιση του προβλήματος, ιδιαίτερα σε περιοχές με υψηλές συγκεντρώσεις αλάτων, όπως σε παράκτιους υδροφορείς. Με γνώμονα τα προαναφερθέντα ζητήματα, στην παρούσα εργασία εξετάζεται η δυνατότητα χρήσης νευρωνικών δικτύων για την εκτίμηση των συγκεντρώσεων των νιτρικών ιόντων σε υπόγειους υδροφορείς.Το νευρωνικό δίκτυο δεν απαιτεί γνώση των γεωμορφολογικών χαρακτηριστικών της περιοχής, η οποία είναι δύσκολο να αποκτηθεί, ενώ ως παράμετροι εισόδου μπορούν να χρησιμοποιηθούν μεταβλητές χωρίς να υπάρχει γνώση των σχέσεων που τις διέπουν στο σύστημα που μελετάται (Trichakis et al., 2011). Για το σκοπό της εργασίας, αναπτύχθηκαν συνολικά τρία νευρωνικά δίκτυα σε περιβάλλον Matlab. Για το πρώτο δίκτυο χρησιμοποιήθηκαν εύκολα μετρήσιμα δεδομένα πεδίου. Οι παράμετροι που μελετήθηκαν αρχικά ήταν το pH, η ηλεκτρική αγωγιμότητα, η θερμοκρασία του νερού και του αέρα και η στάθμη του υδροφορέα. Με αυτές τις παραμέτρους, το μοντέλο πέτυχε αρκετά καλή προσομοίωση (R=0.92259, NSE=0.8406). Κατόπιν, για την καλύτερη περιγραφή του συστήματος επιλέχθηκε να εισαχθεί στο μοντέλο και το ποσοστό χρήσεων γης σε ακτίνα 1000 m από το κάθε πηγάδι. Με την είσοδο αυτής της μεταβλητής, παρατηρήθηκε σημαντική αύξηση της απόδοσης του μοντέλου (R=0.97412, NSE=0.9481). Στο τρίτο μοντέλο, η προσομοίωση βασίστηκε σε τυπικές μετρήσεις ποιότητας νερού. Συγκεκριμένα, χρησιμοποιήθηκαν το pH, η ηλεκτρική αγωγιμότητα, τα ανθρακικά ιόντα (HCO3-) και τα ιόντα Cl-, Ca2+, Mg2+, Na+, K+, SO42-. Στο συγκεκριμένο μοντέλο σημειώθηκε η καλύτερη προσομοίωση (R=0.96545, NSE=0.987838), το οποίο πιθανά οφείλεται στην ύπαρξη περισσότερων δεδομένων. Τέλος, χρησιμοποιώντας το δεύτερο μοντέλο, στο οποίο θεωρείται ότι έχουν συμπεριληφθεί παράγοντες που επηρεάζουν σημαντικά τη μεταφορά νιτρικών, εξετάστηκαν σενάρια κλιματικής αλλαγής και αλλαγών χρήσεων γης ώστε να εκτιμηθούν οι επιπτώσεις τους στα επίπεδα των συγκεντρώσεων NO3-. Τα αποτελέσματα των σεναρίων καταδεικνύουν τη σημαντική συμβολή των αγροτικών αλλά και των βιομηχανικών δραστηριοτήτων στα αυξημένα επίπεδα της νιτρορύπανσης.Για την κατασκευή των μοντέλων αντλήθηκαν δεδομένα από μετρήσεις που έγιναν στο χρονικό διάστημα 2000-2008 σε γεωτρήσεις του Νομού Βοιωτίας, στο πλαίσιο υδρογεωλογικής και υδροχημικής έρευνας του ΙΓΜΕ (Γιαννουλόπουλος, 2008). Πιο συγκεκριμένα, χρησιμοποιηθήκαν δεδομένα από γεωτρήσεις που είναι τοποθετημένες στο Κωπαϊδικό Πεδίο και την ευρύτερη περιοχή της Λεκάνης Απορροής του Ασωπού ποταμού, όπου υπάρχει ιδιαίτερα υψηλή αγροτική, κτηνοτροφική και βιομηχανική δραστηριότητα. Για το λόγο αυτόν, στις υπό εξέταση περιοχές έχει παρουσιαστεί εκτεταμένη ρύπανση και σύμφωνα με τα κριτήρια της Οδηγίας 91/676/ΕΟΚ, καθορίστηκαν με τις ΚΥΑ 19652/1906/1999 (ΦΕΚ Β’ 1575/05-08-1999) και ΚΥΑ 106253/08.11.10 ως ζώνες ευπρόσβλητες σε νιτρορύπανση γεωργικής προέλευσης.Η καλή προσομοίωση που επετεύχθη στα μοντέλα, τα καθιστά ένα χρήσιμο εργαλείο για την πρόβλεψη των επιπέδων ρύπανσης, που θα αποτελεί τη βάση για την κατάστρωση σχεδίων από τις αρμόδιες αρχέ