Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Tweester at SemEval-2016 task 4: sentiment analysis in twitter using semantic-affective model adaptation

Palogiannidi Elisavet, Kolovou, A. 1974-, Christopoulou Fenia, Kokkinos Filippos, Iosif Ilias, Malandrakis Nikolaos, Papageorgiou Harris, Narayanan Shrikanth Shri S., Potamianos, Alexandros

Simple record


URIhttp://purl.tuc.gr/dl/dias/412B69AD-C875-4789-9539-E5E091447DD9-
Identifierhttp://www.aclweb.org/anthology/S16-1023-
Languageen-
Extent9 pagesen
TitleTweester at SemEval-2016 task 4: sentiment analysis in twitter using semantic-affective model adaptationen
CreatorPalogiannidi Elisaveten
CreatorΠαλογιαννιδη Ελισαβετel
CreatorKolovou, A. 1974-en
CreatorChristopoulou Feniaen
CreatorKokkinos Filipposen
CreatorIosif Iliasen
CreatorΙωσηφ Ηλιαςel
CreatorMalandrakis Nikolaosen
CreatorΜαλανδρακης Νικολαοςel
CreatorPapageorgiou Harrisen
CreatorNarayanan Shrikanth Shri S.en
CreatorPotamianos, Alexandrosen
PublisherAssociation for Computational Linguisticsen
Content SummaryWe describe our submission to SemEval2016 Task 4: Sentiment Analysis in Twitter. The proposed system ranked first for the subtask B. Our system comprises of multiple independent models such as neural networks, semantic-affective models and topic modeling that are combined in a probabilistic way. The novelty of the system is the employment of a topic modeling approach in order to adapt the semantic-affective space for each tweet. In addition, significant enhancements were made in the main system dealing with the data preprocessing and feature extraction including the employment of word embeddings. Each model is used to predict a tweet's sentiment (positive, negative or neutral) and a late fusion scheme is adopted for the final decision.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-11-14-
Date of Publication2016-
SubjectSediment analysisen
SubjectTwitteren
SubjectNeural networksen
Bibliographic CitationE. Palogiannidi, A. Kolovou, F. Christopoulou, F. Kokkinos, E. Iosif, N. Malandrakis, H. Papageorgiou, S. Narayanan and A. Potamianos, "Tweester at SemEval-2016 task 4: sentiment analysis in twitter using semantic-affective model adaptation," in 10th International Workshop on Semantic Evaluation, 2016, pp. 155-163. en

Services

Statistics