Το έργο με τίτλο Αριθμητικές μέθοδοι υψηλής τάξης ακρίβειας για μοντέλα κυκλοφοριακής ροής από τον/τους δημιουργό/ούς Bolaris Leonidas διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
Λεωνίδας Μπόλαρης, "Αριθμητικές μέθοδοι υψηλής τάξης ακρίβειας για μοντέλα κυκλοφοριακής ροής", Μεταπτυχιακή Διατριβή, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2018
https://doi.org/10.26233/heallink.tuc.79283
Στην εργασία θα μελετηθεί η αριθμητική προσέγγιση μερικών, ευρέως εφαρμοσμένων, δεύτερης τάξης μακροσκοπικών μοντέλων κυκλοφοριακής. Μια προσέγγιση τύπου χαλάρωσης(relax) relax) των μακροσκοπικών μοντέλων λαμβάνεται υπόψη. Χρησιμοποιώντας την προσέγγιση της χαλάρωσης, οι μη-γραμμικές διαφορικές εξισώσεις μετατρέπονται σε ένα ημι-γραμμικό διανομοποιήσιμο πρόβλημα με γραμμικές χαρακτηριστικές μεταβλητές και δύσκαμπτες πηγές. Για την αιθμητική επίλυση του σύστηματος χαλάρωσης, εξετάζονται ανακατασκευές χαμηλής και υψηλής ανάλυσης στο χώρο και ρητά σχήματα ενσωμάτωσης χρόνου τύπου Runge-Kutta. Η οικογένεια χωρικών διακριτοποιήσεων περιλαμβάνει μία προσέγγιση τύπου MUSCL δεύτερης τάξης και μία WENO πέμπτης τάξης. Έμφαση δίνεται στο σύστημα WENO και στις επιδόσεις του για την επίλυση των διαφορετικών μοντέλων κυκλοφορίας. Για να αποδειχθεί η αποτελεσματικότητα της προτεινόμενης προσέγγισης, διεξάγονται εκτεταμένες αριθμητικές δοκιμές για τα διάφορα μοντέλα. κυκλοφοριακής ροής.