URI | http://purl.tuc.gr/dl/dias/9262DC8C-9A71-4EF4-8E14-1B6607EAB2C5 | - |
Αναγνωριστικό | https://ieeexplore.ieee.org/document/7459528 | - |
Γλώσσα | en | - |
Μέγεθος | 6 pages | en |
Τίτλος | Highly efficient reconfigurable parallel graph cuts for embedded vision | en |
Δημιουργός | Nikitakis Antonios | en |
Δημιουργός | Νικητακης Αντωνιος | el |
Δημιουργός | Papaefstathiou Ioannis | en |
Δημιουργός | Παπαευσταθιου Ιωαννης | el |
Εκδότης | Institute of Electrical and Electronics Engineers | en |
Περίληψη | Graph cuts are very popular methods for combinatorial optimization mainly utilized, while also being the most computational intensive part, in several vision schemes such as image segmentation and stereo correspondence; their advantage is that they are very efficient as they provide guarantees about the optimality of the reported solution. Moreover, when those vision schemes are executed in mobile devices there is a strong need, not only for real-time processing, but also for low power/energy consumption. In this paper, we present a novel architecture for the implementation, in reconfigurable hardware, of one of the most widely used graph cuts algorithms, which is also the fastest sequential one, called BK. Our novelty comes from the fact that we use a 2-level hierarchical decomposition method to parallelize it in a very modular way allowing it to be efficiently implemented in FPGAs with different number of logic cells and/or memory resources. We fast-prototyped the architecture, using a High level synthesis workflow, in a state-of-the-art FPGA device; our implementation outperforms an optimized reference software solution by more than 6x, while consuming 35 times less energy;. To the best of our knowledge this is the first parallel implementation of this very widely used algorithm in reconfigurable hardware. | en |
Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Full Paper | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2018-10-16 | - |
Ημερομηνία Δημοσίευσης | 2016 | - |
Θεματική Κατηγορία | Dual decomposition | en |
Θεματική Κατηγορία | Embedded system | en |
Θεματική Κατηγορία | FPGA | en |
Θεματική Κατηγορία | Graph cuts | en |
Θεματική Κατηγορία | Low power | en |
Θεματική Κατηγορία | Markov random field | en |
Βιβλιογραφική Αναφορά | A. Nikitakis and I. Papaefstathiou, "Highly efficient reconfigurable parallel graph cuts for embedded vision," in 19th Design, Automation and Test in Europe Conference and Exhibition, 2016, pp. 1405-1410. | en |