Το έργο με τίτλο Deep learning based human behavior recognition in industrial workflows από τον/τους δημιουργό/ούς Makantasis Konstantinos, Doulamis Anastasios, Doulamis Nikolaos D., Psychas Konstantinos διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
K. Makantasis, A. Doulamis, N. Doulamis and K. Psychas, "Deep learning based human behavior recognition in industrial workflows," in 23rd IEEE International Conference on Image Processing, 2016, pp. 1609-1613. doi: 10.1109/ICIP.2016.7532630
https://doi.org/10.1109/ICIP.2016.7532630
We consider the fully automated behavior understanding through visual cues in industrial environments. In contrast to most existing work, which relies on domain knowledge to construct complex handcrafted features from inputs, we exploit a Convolutional Neural Network (CNN), which is a type of deep model and can act directly on the raw inputs, to automate the process of feature construction. Although such models are limited to handle still 2D inputs, in this paper we appropriately transform video input to incorporate temporal information into each frame. This way our model hierarchically constructs features from both spatial and temporal dimensions. We apply our model in real-world environment, on data taken from Nissan factory, and it achieves superior performance without relying on handcrafted features.