Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Συντονισμός κάλυψης σε δίκτυα αισθητήρων μέσω ενισχυτικής μάθησης

Kotzabasakis Georgios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/3B99A3C5-D256-4D61-89EA-3B0A0852F489
Έτος 2018
Τύπος Διπλωματική Εργασία
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Γεώργιος Κοτζαμπασάκης, "Συντονισμός κάλυψης σε δίκτυα αισθητήρων μέσω ενισχυτικής μάθησης", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2018 https://doi.org/10.26233/heallink.tuc.78763
Εμφανίζεται στις Συλλογές

Περίληψη

Η μηχανική μάθηση είναι ένα ταχύτατα και διαρκώς αναπτυσσόμενο πεδίο στην επιστήμη των υπολογιστών. Εκτός από αυτό, τα δίκτυα αισθητήρων είναι επίσης ένα πολλά υποσχόμενο πεδίο που έχει σημαντική επίδραση σε μία ποικιλία από εφαρμογές. Βάσει των παραπάνω, μία προσέγγιση πολυπρακτορικού συστήματος (MAS) σε ασύρματα δίκτυα αισθητήρων (WSNs) που περιλαμβάνει αισθητήρες-ενεργοποιητές κόμβους είναι πολλά υποσχόμενη, καθώς μπορεί δυνητικά να αντιμετωπίσει τους περιορισμούς σε πόρους που είναι έμφυτοι σε αυτά τα δίκτυα με το να συντονίζει αποδοτικά τις δραστηριότητες μεταξύ των κόμβων. Επιπλέον, ένα κοινό θέμα στο πεδίο των δικτύων αισθητήρων είναι το πρόβλημα της συντονισμένης κάλυψης, στο οποίο καλείται κάποιος να καλύψει κατάλληλα και επαρκώς μία περιοχή με αισθητήρες. Σε αυτή τη διπλωματική εργασία, εξετάζουμε το πρόβλημα της συντονισμένης κάλυψης των αισθητήρων και μελετάμε τη συμπεριφορά και την απόδοση του τελείως κατανεμημένου Q-Learning αλγορίθμου ενισχυτικής μάθησης χρησιμοποιώντας γραμμική προσέγγιση της συνάρτησης χρησιμότητας. Χρησιμοποιούμε την πλατφόρμα Tossim για να προσομοιώσουμε την TinyOS εφαρμογή μας, η οποία αποτελείται από διαφορετικές τοπολογίες δικτύου αισθητήρων με παραμετροποιημένο μέγεθος. Στη συνέχεια, παρουσιάζουμε τα αποτελέσματα της υλοποίησης μας και δείχνουμε έναν αριθμό από γραφήματα για να οπτικοποιήσουμε τις εκβάσεις της απόδοσης και της μάθησης σε τρεις συγκεκριμένες τοπολογίες. Λαμβάνουμε υπ’ όψιν θέματα, όπως επιτυχή σύγκλιση σε βέλτιστες πολιτικές και μεγιστοποίηση των τοπικών και καθολικών ανταμοιβών. Τα αποτελέσματα της υλοποίησης είναι αρκετά ενθαρρυντικά από την άποψη των υψηλών ποσοστών επιτυχών συγκλίσεων του αλγορίθμου μας σε βέλτιστες πολιτικές.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά