Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Data mining parameters' selection procedure applied to a multi-start local search algorithm for the permutation flow shop scheduling problem

Makrymanolakis Nikolaos, Marinaki Magdalini, Marinakis Ioannis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/AA3480B2-49F4-4B89-AA08-A9D6309D1E75
Έτος 2017
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά N. Makrymanolakis, M. Marinaki and Y. Marinakis, "Data mining parameters' selection procedure applied to a multi-start local search algorithm for the permutation flow shop scheduling problem," in 2016 IEEE Symposium Series on Computational Intelligence, 2017. doi: 10.1109/SSCI.2016.7850198 https://doi.org/10.1109/SSCI.2016.7850198
Εμφανίζεται στις Συλλογές

Περίληψη

In this paper, a new metaheuristic algorithm is developed, suitable for solving combinatorial optimization problems, such as the job shop scheduling problems, the travelling salesman problem, the vehicle routing problem, etc. This study focuses on permutation flow-shop scheduling problem. The proposed algorithm combines various techniques used in local search. As various elements of the proposed algorithm may be tuned, a systematic data mining procedure is followed and utilizes data from a number of executions in order to build models for the suitable parameterization for every problem size. The results, using the model suggested parameter combinations, are presented using benchmark instances for the permutation flow-shop scheduling problem from the literature. The results show that the followed parameter control procedure improved vastly the efficiency of the proposed algorithm.

Υπηρεσίες

Στατιστικά