Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach

Alexakis Dimitrios, Mexis Filippos-Dimitrios, Vozinaki Anthi-Eirini, Daliakopoulos Ioannis, Tsanis Giannis

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/E7A0126C-2725-46AE-8574-04A2E39BE7C7-
Αναγνωριστικόhttp://www.mdpi.com/1424-8220/17/6/1455-
Αναγνωριστικόhttps://doi.org/10.3390/s17061455-
Γλώσσαen-
ΤίτλοςSoil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approachen
ΔημιουργόςAlexakis Dimitriosen
ΔημιουργόςΑλεξακης Δημητριοςel
ΔημιουργόςMexis Filippos-Dimitriosen
ΔημιουργόςΜεξης Φιλιππος-Δημητριοςel
ΔημιουργόςVozinaki Anthi-Eirinien
ΔημιουργόςΒοζινακη Ανθη-Ειρηνηel
ΔημιουργόςDaliakopoulos Ioannisen
ΔημιουργόςΔαλιακοπουλος Ιωαννηςel
ΔημιουργόςTsanis Giannisen
ΔημιουργόςΤσανης Γιαννηςel
ΕκδότηςMDPIen
ΠερίληψηA methodology for elaborating multi-temporal Sentinel-1 and Landsat 8 satellite images for estimating topsoil Soil Moisture Content (SMC) to support hydrological simulation studies is proposed. After pre-processing the remote sensing data, backscattering coefficient, Normalized Difference Vegetation Index (NDVI), thermal infrared temperature and incidence angle parameters are assessed for their potential to infer ground measurements of SMC, collected at the top 5 cm. A non-linear approach using Artificial Neural Networks (ANNs) is tested. The methodology is applied in Western Crete, Greece, where a SMC gauge network was deployed during 2015. The performance of the proposed algorithm is evaluated using leave-one-out cross validation and sensitivity analysis. ANNs prove to be the most efficient in SMC estimation yielding R2 values between 0.7 and 0.9. The proposed methodology is used to support a hydrological simulation with the HEC-HMS model, applied at the Keramianos basin which is ungauged for SMC. Results and model sensitivity highlight the contribution of combining Sentinel-1 SAR and Landsat 8 images for improving SMC estimates and supporting hydrological studies.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2018-05-08-
Ημερομηνία Δημοσίευσης2017-
Θεματική ΚατηγορίαArtificial neural networken
Θεματική ΚατηγορίαCreteen
Θεματική ΚατηγορίαHEC-HMSen
Θεματική ΚατηγορίαLandsat 8en
Θεματική ΚατηγορίαSentinel-1en
Θεματική ΚατηγορίαSoil moisture contenten
Βιβλιογραφική ΑναφοράD. D. Alexakis, F.-D. K. Mexis, A.-E. K. Vozinaki, I. N. Daliakopoulos and I. K. Tsanis, "Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach," Sensors, vol. 17, no. 6, Jun. 2017. doi: 10.3390/s17061455en

Υπηρεσίες

Στατιστικά