Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Long-term electricity demand forecasting via ordinal regression analysis: the case of Greece

Angelopoulos Dimitrios, Psarras John E., Siskos, Yannis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/93214083-0753-4F34-B7C0-C12322305B6A
Έτος 2017
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά D. Angelopoulos, J. Psarras and Y. Siskos, "Long-term electricity demand forecasting via ordinal regression analysis: The case of Greece," in IEEE Manchester PowerTech, 2017. doi : 10.1109/PTC.2017.7981153 https://doi.org/10.1109/PTC.2017.7981153
Εμφανίζεται στις Συλλογές

Περίληψη

Electricity demand forecasting constitutes a critical process in the operation and planning procedures of power networks that highly affects the decisions of utility providers and energy policy makers. Accurate forecasting is vital in reducing costs, related to excess electricity storage and infrastructures, and achieving enhanced power security and stability. A novel modeling approach for long-term electricity demand forecasting is introduced via the application of ordinal regression analysis. Annual forecasts of the total net electricity demand in the Greek interconnected power system are provided for the years 2016-2025. The Gross Domestic Product (GDP) has been identified as the greatest influential parameter on the evolution of electricity demand. Furthermore, the forecasting model has achieved a minimum Mean Absolute Percentage Error (MAPE) of 2.14%. The extracted forecasts indicate a constant increase of the total net electricity demand in Greece as a result of the expected economic growth during the upcoming years.

Υπηρεσίες

Στατιστικά