Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Statistical compact modeling of low frequency noise in buried-channel, native, and standard MOSFETs

Mavredakis Nikolaos, Bucher Matthias, Habaš Predrag, Acović, Alexandre, Meyer René

Simple record


URIhttp://purl.tuc.gr/dl/dias/8C751A60-2C73-4922-A2F2-6E38608D9356-
Identifierhttps://ieeexplore.ieee.org/document/7985942/-
Identifierhttps://doi.org/10.1109/ICNF.2017.7985942-
Languageen-
TitleStatistical compact modeling of low frequency noise in buried-channel, native, and standard MOSFETsen
CreatorMavredakis Nikolaosen
CreatorΜαυρεδακης Νικολαοςel
CreatorBucher Matthiasen
CreatorBucher Matthiasel
CreatorHabaš Predragen
CreatorAcović, Alexandreen
CreatorMeyer Renéen
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryIn this paper, Buried-Channel and Native MOSFETs are thoroughly investigated in terms of Low Frequency Noise (LFN) variability for different bias and area conditions. These devices are compared with standard bulk CMOS transistors indicating lower levels of LFN regarding both its mean value and its variability. Moreover a recently proposed compact MOSFET model for LFN and its variability, is validated with excellent results. More specifically, it covers the increase of noise deviation in weak inversion and generally its strong bias-dependence in larger devices while it also gives consistent results regarding the scaling of LFN variability.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-04-25-
Date of Publication2017-
SubjectBuried channelen
SubjectCompact modelen
SubjectLow frequency noiseen
SubjectMOSFETen
SubjectNativeen
SubjectVariabilityen
Bibliographic CitationN. Mavredakis, M. Bucher, P. Habas, A. Acovic and R. Meyer, "Statistical compact modeling of low frequency noise in buried-channel, native, and standard MOSFETs," in International Conference on Noise and Fluctuations, 2017. doi: 10.1109/ICNF.2017.7985942 en

Services

Statistics