Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Calibrating a traffic flow model with parallel differential evolution

Strofylas Giorgos, Porfyri Kalliroi, Nikolos Ioannis, Delis Anargyros, Papageorgiou Markos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/769CF98D-026C-4DBE-920A-774D0DB071C2
Έτος 2017
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά G. A. Strofylas, K. N. Porfyri, I. K. Nikolos, A. I. Delis and M. Papageorgiou, "Calibrating a traffic flow model with parallel differential evolution," in Fifth International Conference on Parallel, Distributed, Grid and Cloud Computing for Engineering, 2017. doi: 10.4203/ccp.111.26 https://doi.org/10.4203/ccp.111.26
Εμφανίζεται στις Συλλογές

Περίληψη

Given the importance of the credibility and validity required in macroscopic traffic flow models while performing real-word simulations, the necessity of employing an efficient, computationally fast, and reliable constrained optimization scheme for model calibration appears to be mandatory to ensure that the traffic flow characteristics are accurately represented by such models. To this end, a parallel, metamodel-assisted Differential Evolution (DE) algorithm is employed for the calibration of the second-order macroscopic gas-kinetic traffic flow (GKT) model using real traffic data from Attiki Odos freeway in Athens, Greece. The parallelization of the DE algorithm is performed using the Message Passing Interface (MPI), while artificial neural networks (ANNs) are used as surrogate models. Numerical simulations are performed, which demonstrate that the DE algorithm can be effectively used for the search of the globally optimal model parameters in the GKT model; in fact, the method appears to be promising for the calibration of other similar traffic models as well.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά