Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Integrated Critical Zone model (1D-ICZ): a tool for dynamic simulation of soil functions and soil structure

Giannakis Georgios, Nikolaidis Nikolaos, Valstar, Johan R., Moirogiorgou Konstantina, Kotronakis Emmanouil, Paranychianakis Nikolaos, Rousseva, Svetla S., Stamati Foteini, Banwart, Steven A

Simple record


URIhttp://purl.tuc.gr/dl/dias/E65949A6-A1F2-43BA-A57D-FAA8697A01A2-
Identifierhttps://www.sciencedirect.com/science/article/pii/S0065211316301158?via%3Dihub-
Identifierhttps://doi.org/10.1016/bs.agron.2016.10.009-
Languageen-
Extent37 pagesen
TitleIntegrated Critical Zone model (1D-ICZ): a tool for dynamic simulation of soil functions and soil structureen
CreatorGiannakis Georgiosen
CreatorΓιαννακης Γεωργιοςel
CreatorNikolaidis Nikolaosen
CreatorΝικολαιδης Νικολαοςel
CreatorValstar, Johan R.en
CreatorMoirogiorgou Konstantinaen
CreatorΜοιρογιωργου Κωνσταντιαel
CreatorKotronakis Emmanouilen
CreatorΚοτρωνακης Εμμανουηλel
CreatorParanychianakis Nikolaosen
CreatorΠαρανυχιανακης Νικολαοςel
CreatorRousseva, Svetla S.en
CreatorStamati Foteinien
CreatorΣταματη Φωτεινηel
CreatorBanwart, Steven Aen
PublisherElsevieren
Content SummaryFood security should be addressed in relation to soil sustainability and sustainable land care, and examined within the science framework of Earth's critical zone as an integrated system that includes Earth surface interactions, connected to soil functions, and ecosystem services. There is a great need to develop critical zone mathematical models that will simulate and quantify soil functions and that can be used as management tools to address soil sustainability and land care practices. The integrated critical zone model, 1D-ICZ, couples computational modules for soil organic matter dynamics, soil aggregation and structure dynamics, bioturbation, plant productivity and nutrient uptake, water flow, solute speciation and transport, and mineral weathering kinetics. The 1D-ICZ model, coupled with new pedotransfer functions to predict bulk soil properties, introduces for the first time a model that dynamically links soil structure characteristics and hydraulic soil properties by simulating their changes under varying meteorological conditions and plant growth. Field data from a Mediterranean olive grove at the Koiliaris Critical Zone Observatory (CZO) were used to simulate carbon addition to soil and agricultural management scenarios, in order to illustrate the model's ability to quantify soil management impact on soil functions and biogeochemical transformations and fluxes. The 1D-ICZ model can be used to assess, understand, and quantify the complex interactions between the different processes in the soil-plant-water system and can be applied as a tool to design sustainable agricultural management practices, taking into consideration synergy and trade-offs among soil functions.en
Type of ItemΚεφάλαιο σε Βιβλίοel
Type of ItemBook Chapteren
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-03-12-
Date of Publication2017-
SubjectAgricultural practicesen
SubjectCritical zone modelingen
SubjectPedotransfer functionsen
SubjectSoil functionsen
SubjectSustainable land managementen
Bibliographic CitationG.V. Giannakis, N. P. Nikolaidis, J. Valstar, E. C. Rowe, K. Moirogiorgou, M. Kotronakis, N. V. Paranychianakis, S. Rousseva, F. E Stamati and S. A. Banwart, "Integrated Critical Zone model (1D-ICZ): a tool for dynamic simulation of soil functions and soil structure," in Quantifying and Managing Soil Functions in Earth's Critical Zone Combining Experimentation and Mathematical Modelling, vol. 142, Advances in Agronomy, S. A. Banwart and D. L. Sparks, Eds., Amsterdam, The Netherlands: Elsevier, 2017, pp. 277-314. doi:10.1016/bs.agron.2016.10.009en
Book TitleQuantifying and Managing Soil Functions in Earth's Critical Zone Combining Experimentation and Mathematical Modellingen
Book SeriesAdvances in Agronomyen

Services

Statistics