Μιχαήλ-Άγγελος Παπίλαρης, "Ανάπτυξη ενός αποτελεσματικού συστήματος εξατομικευμένων συστάσεων με χρήση Markov Chain Monte Carlo", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2017
https://doi.org/10.26233/heallink.tuc.68756
Τα εξατομικευμένα συστήματα συστάσεων, αποσκοπούν να βοηθήσουν τους χρήστες να ανακτήσουν πληροφορίες από μεγάλες συλλογές, εντοπίζοντας και προτείνοντας προϊόντα ή υπηρεσίες δυνητικού ενδιαφέροντος. Συχνά η διαδικασία εξαγωγής προτιμήσεων των χρηστών είναι περίπλοκη και βασίζεται σε στοιχεία για την συμπεριφορά άλλων χρηστών. Για να ξεπεραστούν αυτοί οι περιορισμοί, προτείνουμε μια Μπαεσιανή προσέγγιση για την εξαγωγή εξατομικευμένων προτάσεων, καταγράφοντας παθητικά τις προτιμήσεις των χρηστών, χρησιμοποιώντας μια συνάρτηση χρησιμότητας (utility function) την οποία το σύστημα μαθαίνει. Πιο συγκεκριμένα, αντί να ζητάμε από το χρήστη να καθορίσει την συνάρτηση χρησιμότητας, το οποίο είναι μη ρεαλιστικό, μαθαίνουμε τη συνάρτηση χρησιμότητας παρατηρώντας έμμεσα τον χρήστη και τις επιλογές του (clicks), και συντηρώντας σχετικές (πιθανοτικές) πεποιθήσεις. Η συνάρτηση χρησιμότητας αποτελείται από έναν γραμμικό συνδυασμό (σταθμισμένων) χαρακτηριστικών και οι πεποιθήσεις ενημερώνονται χρησιμοποιώντας έναν αλγόριθμο Markov Chain Monte Carlo. Επιπρόσθετα, σε περιπτώσεις όπου δεν έχουμε συλλέξει αρκετά δεδομένα σχετικά με τον χρήστη, σχηματίσαμε ομάδες (clusters) που δημιουργήσαμε από τα δεδομένα που έχουμε συλλέξει από άλλους χρήστες. Τέλος, προκειμένου να αξιολογήσουμε την απόδοση του συστήματός μας, το εφαρμόσαμε στον τομέα των συστάσεων για ηλεκτρονικές κρατήσεις ξενοδοχείων χρησιμοποιώντας πραγματικά σύνολα δεδομένων (datasets).