Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Factored MDPs for optimal prosumer decision-making in the smart grid

Angelidakis Angelos

Simple record


URIhttp://purl.tuc.gr/dl/dias/5AE5689F-69AA-4E38-8EDD-0F5F8EC9D826-
Identifierhttps://doi.org/10.26233/heallink.tuc.62539-
Languageen-
Extent3,1 megabytesen
TitleFactored MDPs for optimal prosumer decision-making in the smart griden
TitleΠαραγοντοποιημένες μαρκοβιανές στοχαστικές διαδικασίες για βέλτιστη λήψη αποφάσεων ενός παραγωγού - καταναλωτή στο έξυπνο δίκτυο ηλεκτροδότησηςel
CreatorAngelidakis Angelosen
CreatorΑγγελιδακης Αγγελοςel
Contributor [Thesis Supervisor]Chalkiadakis Georgiosen
Contributor [Thesis Supervisor]Χαλκιαδακης Γεωργιοςel
Contributor [Committee Member]Koutroulis Eftychiosen
Contributor [Committee Member]Κουτρουλης Ευτυχιοςel
Contributor [Committee Member]Lagoudakis Michaelen
Contributor [Committee Member]Λαγουδακης Μιχαηλel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitΠολυτεχνείο Κρήτης: Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryTackling the decision-making problem faced by a prosumer (i.e., a producer that is simultaneously a consumer) when selling and buying energy in the emerging smart electricity grid, is of utmost importance for the economic profitability of such a business entity. In this thesis, we model, for the first time, this problem as a factored Markov Decision process (MDP). Our model successfully captures the main aspects of the business decisions of a prosumer corresponding to a com- munity microgrid of any size. Moreover, it includes appropriate sub-models for prosumer production and consumption prediction. Employing this model, we are able to represent the problem compactly, and to provide an exact optimal solution via dynamic programming—notwithstanding its large size. In addition, we show how to use approximate MDP solution meth- ods for taking decisions in this domain, without the need of discretizing the state space. Specifically, we employ fitted value iteration, a sampling-based approxi- mation method that is known to be well behaved. By so doing, we generalize our factored MDP solution method to continuous state spaces. Our experimental simulations verify the effectiveness of our approach. They show that our exact value iteration solution matches that of a state-of-the-art method for stochastic planning in very large environments, while outperforming it in terms of computation time. Furthermore, we evaluate our approximate solution method via using a variety of basis functions over different state sample sizes, and comparing its performance to that of our exact value iteration algorithm. Our approximation method is shown to exhibit stable performance in terms of accu- mulated reward, which for certain basis functions reaches 90% of that gathered by the exact algorithm.en
Type of ItemΜεταπτυχιακή Διατριβήel
Type of ItemMaster Thesisen
Licensehttp://creativecommons.org/licenses/by-sa/4.0/en
Date of Item2015-12-11-
Date of Publication2015-
SubjectDecision theoretic planningen
SubjectSmart griden
SubjectFactored Markov Decision Processen
Bibliographic CitationΆγγελος Αγγελιδάκης, "Παραγοντοποιημένες μαρκοβιανές στοχαστικές διαδικασίες για βέλτιστη λήψη αποφάσεων ενός παραγωγού - καταναλωτή στο έξυπνο δίκτυο ηλεκτροδότησης", Μεταπτυχιακή Διατριβή, Σχολή Ηλεκτρονικών Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2015el
Bibliographic CitationAngelos Angelidakis, "Factored MDPs for optimal prosumer decision-making in the smart grid", Master Thesis, School of Electronic Computer Engineering, Technical University of Crete, Chania, Greece, 2015el

Available Files

Services

Statistics