URI | http://purl.tuc.gr/dl/dias/09F0998A-1CC4-4760-9DDC-0E190E255C7D | - |
Identifier | https://pdfs.semanticscholar.org/78fa/613beaeebbe5bff344905e49e989be595b21.pdf | - |
Language | en | - |
Extent | 10 pages | en |
Title | A fast approximation scheme for probabilistic wavelet synopses | en |
Creator | Deligiannakis Antonios | en |
Creator | Δεληγιαννακης Αντωνιος | el |
Creator | Garofalakis Minos | en |
Creator | Γαροφαλακης Μινως | el |
Creator | Roussopoulos Nick | en |
Content Summary | Several studies have demonstrated the effectiveness of Haar
wavelets in reducing large amounts of data down to compact wavelet
synopses that can be used to obtain fast, accurate approximate
query answers. While Haar wavelets were originally designed
for minimizing the overall root-mean-squared (i.e., ✂✁
-
norm) error in the data approximation, the recently-proposed idea
of probabilistic wavelet synopses also enables their use in minimizing
other error metrics, such as the relative error in individual
data-value reconstruction, which is arguably the most important
for approximate query processing. Known construction algorithms
for probabilistic wavelet synopses employ probabilistic schemes
for coefficient thresholding that are based on optimal DynamicProgramming
(DP) formulations over the error-tree structure for
Haar coefficients. Unfortunately, these (exact) schemes can scale
quite poorly for large data-domain and synopsis sizes. To address
this shortcoming, in this paper, we introduce a novel, fast approximation
scheme for building probabilistic wavelet synopses over
large data sets. Our algorithm’s running time is near-linear in the
size of the data-domain (even for very large synopsis sizes) and
proportional to ✄✆☎✞✝, where ✝ is the desired approximation guarantee.
The key technical idea in our approximation scheme is to
make exact DP formulations for probabilistic thresholding much
“sparser”, while ensuring a maximum relative degradation of ✝ on
the quality of the approximate synopsis, i.e., the desired approximation
error metric. Extensive experimental results over synthetic
and real-life data clearly demonstrate the benefits of our proposed
techniques. | en |
Type of Item | Πλήρης Δημοσίευση σε Συνέδριο | el |
Type of Item | Conference Full Paper | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-12-01 | - |
Date of Publication | 2005 | - |
Subject | Databases | en |
Bibliographic Citation | A. Deligiannakis, M. Garofalakis and N. Roussopoulos, "A fast approximation scheme for probabilistic wavelet synopses," in 17th International Scientific and Statistical Database Management Conference, June 2005, pp. 243-252.
| en |