URI | http://purl.tuc.gr/dl/dias/CC96CE04-CBF2-4254-99E9-60E54877435C | - |
Identifier | http://www.vldb.org/conf/2006/p163-jeffery.pdf | - |
Language | en | - |
Extent | 12 pages | en |
Title | Adaptive cleaning for RFID data streams | en |
Creator | Shawn R. Jeffery | en |
Creator | Garofalakis Minos | en |
Creator | Γαροφαλακης Μινως | el |
Creator | Franklin Michael J. | en |
Publisher | Association for Computing Machinery | en |
Content Summary | To compensate for the inherent unreliability of RFID data streams,
most RFID middleware systems employ a “smoothing filter”, a
sliding-window aggregate that interpolates for lost readings. In this
paper, we propose SMURF, the first declarative, adaptive smoothing
filter for RFID data cleaning. SMURF models the unreliability
of RFID readings by viewing RFID streams as a statistical sample
of tags in the physical world, and exploits techniques grounded in
sampling theory to drive its cleaning processes. Through the use of
tools such as binomial sampling and π-estimators, SMURF continuously
adapts the smoothing window size in a principled manner to
provide accurate RFID data to applications. | en |
Type of Item | Πλήρης Δημοσίευση σε Συνέδριο | el |
Type of Item | Conference Full Paper | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-12-01 | - |
Date of Publication | 2006 | - |
Subject | Databases technology | en |
Bibliographic Citation | S. R. Jeffery, M. Garofalakis and M. J. Franklin, "Adaptive cleaning for RFID data streams", in 32nd International Conference on Very Large Data Bases, 2006, pp 163-174.
| en |