Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Proof sketches: verifiable in-network aggregation

Garofalakis Minos, Hellerstein Joseph M., Maniatis Petros

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/1C4CF2E5-1B4C-471E-8E48-469FDE16C3F7-
Αναγνωριστικόhttp://www.softnet.tuc.gr/~minos/Papers/icde07amfm.pdf-
Αναγνωριστικόhttps://doi.org/10.1109/ICDE.2007.368958-
Γλώσσαen-
Μέγεθος10 pagesen
ΤίτλοςProof sketches: verifiable in-network aggregationen
ΔημιουργόςGarofalakis Minosen
ΔημιουργόςΓαροφαλακης Μινωςel
ΔημιουργόςHellerstein Joseph M.en
ΔημιουργόςManiatis Petrosen
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηRecent work on distributed, in-network aggregation assumes a benign population of participants. Unfortunately, modern distributed systems are plagued by malicious participants. In this paper we present a first step towards verifiable yet efficient distributed, in-network aggregation in adversarial settings. We describe a general framework and threat model for the problem and then present proof sketches, a compact verification mechanism that combines cryptographic signatures and Flajolet-Martin sketches to guarantee acceptable aggregation error bounds with high probability. We derive proof sketches for count aggregates and extend them for random sampling, which can be used to provide verifiable approximations for a broad class of dataanalysis queries, e.g., quantiles and heavy hitters. Finally, we evaluate the practical use of proof sketches, and observe that adversaries can often be reduced to much smaller violations in practice than our worst-case bounds suggest.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-11-30-
Ημερομηνία Δημοσίευσης2007-
Θεματική ΚατηγορίαData engineeringen
Θεματική ΚατηγορίαDatabases managementen
Βιβλιογραφική ΑναφοράM. Garofalakis, J. M. Hellerstein and P. Maniatis, "Proof sketches: verifiable in-network aggregation", in IEEE 23rd International Conference on Data Engineering, 2007, pp. 996-1005. doi: 10.1109/ICDE.2007.368958 en

Υπηρεσίες

Στατιστικά