URI | http://purl.tuc.gr/dl/dias/A33A1B33-5D33-4AC4-B5E9-BC95B473B2F3 | - |
Αναγνωριστικό | https://dl.acm.org/citation.cfm?doid=2213836.2213867 | - |
Αναγνωριστικό | https://doi.org/10.1145/2213836.2213867 | - |
Γλώσσα | en | - |
Μέγεθος | 12 pages | en |
Τίτλος | Prediction-based geometric monitoring over distributed data streams | en |
Δημιουργός | Giatrákos, Níkos | en |
Δημιουργός | Deligiannakis Antonios | en |
Δημιουργός | Δεληγιαννακης Αντωνιος | el |
Δημιουργός | Garofalakis Minos | en |
Δημιουργός | Γαροφαλακης Μινως | el |
Δημιουργός | Sharfman Izchak | en |
Δημιουργός | Schuster Assaf | en |
Εκδότης | Association for Computing Machinery | en |
Περίληψη | Many modern streaming applications, such as online analysis of fi-
nancial, network, sensor and other forms of data are inherently distributed
in nature. An important query type that is the focal point in
such application scenarios regards actuation queries, where proper
action is dictated based on a trigger condition placed upon the current
value that a monitored function receives. Recent work [18,
20, 21] studies the problem of (non-linear) sophisticated function
tracking in a distributed manner. The main concept behind the geometric
monitoring approach proposed there, is for each distributed
site to perform the function monitoring over an appropriate subset
of the input domain. In the current work, we examine whether
the distributed monitoring mechanism can become more efficient,
in terms of the number of communicated messages, by extending
the geometric monitoring framework to utilize prediction models.
We initially describe a number of local estimators (predictors) that
are useful for the applications that we consider and which have already
been shown particularly useful in past work. We then demonstrate
the feasibility of incorporating predictors in the geometric
monitoring framework and show that prediction-based geometric
monitoring in fact generalizes the original geometric monitoring
framework. We propose a large variety of different predictionbased
monitoring models for the distributed threshold monitoring
of complex functions. Our extensive experimentation with a variety
of real data sets, functions and parameter settings indicates that our
approaches can provide significant communication savings ranging
between two times and up to three orders of magnitude, compared
to the transmission cost of the original monitoring framework. | en |
Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Full Paper | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-11-30 | - |
Ημερομηνία Δημοσίευσης | 2012 | - |
Θεματική Κατηγορία | Information systems applications | en |
Θεματική Κατηγορία | Database management | en |
Βιβλιογραφική Αναφορά | N. Giatrakos, A. Deligiannakis, M. Garofalakis, I. Sharfman and A. Schuster, "Prediction-based geometric monitoring over distributed data streams," in 2012 ACM SIGMOD International Conference on Management of Data, pp. 265-276. doi: 10.1145/2213836.2213867 | en |