Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A hybrid ACO-GRASP algorithm for clustering analysis

Zopounidis Konstantinos, Matsatsinis Nikolaos, Michael Doumpos, Marinaki Magdalini, Marinakis Ioannis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/A908CC1D-1330-40E7-AC4E-BE1C1CF9F0D6
Έτος 2011
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Y. Marinakis, M. Marinaki, M. Doumpos, N. Matsatsinis and C. Zopounidis, "A hybrid ACO-GRASP algorithm for clustering analysis," Annals Operat. Res., vol. 188, no. 1, pp. 343-358, Aug. 2011. doi:10.1007/s10479-009-0519-2 https://doi.org/10.1007/s10479-009-0519-2
Εμφανίζεται στις Συλλογές

Περίληψη

Cluster analysis is an important tool for data exploration and it has been applied in a wide variety of fields like engineering, economics, computer sciences, life and medical sciences, earth sciences and social sciences. The typical cluster analysis consists of four steps (i.e. feature selection or extraction, clustering algorithm design or selection, cluster validation and results interpretation) with feedback pathway. These steps are closely related to each other and affect the derived clusters. In this paper, a new metaheuristic algorithm is proposed for cluster analysis. This algorithm uses an Ant Colony Optimization to feature selection step and a Greedy Randomized Adaptive Search Procedure to clustering algorithm design step. The proposed algorithm has been applied with very good results to many data sets.

Υπηρεσίες

Στατιστικά