Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Function spaces not containing ℓ1

Manousakis Antonios, Petrakis, Marina, Deliyanni,I

Simple record


URIhttp://purl.tuc.gr/dl/dias/3E8F358E-D09A-41B8-B420-0B4E5FB05D85-
Identifierhttps://doi.org/10.1007/BF02776049-
Languageen-
Extent53 pagesen
TitleFunction spaces not containing ℓ1en
CreatorManousakis Antoniosen
CreatorΜανουσακης Αντωνιοςel
CreatorPetrakis, Marinaen
CreatorDeliyanni,Ien
PublisherSpringer Verlagen
Content SummaryFor Ω bounded and open subset ofBd0 andX a reflexive Banach space with 1-symmetric basis, the function spaceJF X (Ω) is defined. This class of spaces includes the classical James function space. Every member of this class is separable and has non-separable dual. We provide a proof of topological nature thatJF X (Ω) does not contain an isomorphic copy of ℓ1. We also investigate the structure of these spaces and their duals.el
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-11-14-
Date of Publication2003-
Bibliographic CitationS. A. Argyros , A. Manoussakis, M. Petrakis ,"Function spaces not containing ℓ1,"Israel J. of Mathematics , vol. 135, no. 1, pp 29-81,Dec. 2003.doi:10.1007/BF02776049en

Services

Statistics