Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Efficient computation of the M-phase vector that maximizes a rank-deficientquadratic form

Papailiopoulos Dimitrios , Karystinos Georgios

Simple record


URIhttp://purl.tuc.gr/dl/dias/DD27E75E-3E4F-4177-8D79-B3FABA179F1A-
Identifierhttps://doi.org/10.1109/CISS.2008.4558680-
Languageen-
Extent4en
TitleEfficient computation of the M-phase vector that maximizes a rank-deficient quadratic formen
Creator Papailiopoulos Dimitrios en
CreatorKarystinos Georgiosen
CreatorΚαρυστινος Γεωργιοςel
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryThe maximization of a full-rank quadratic form over a finite alphabet is NP-hard in both a worst-case sense and an average sense. Interestingly, if the rank of the form is not a function of it, then it can be maximized in polynomial time. An algorithm for the efficient computation of the M-phase vector that maximizes a rank-deficient quadratic form is developed based on an analytic procedure. Auxiliary hyperspherical coordinates are introduced and the multi-dimensional space is partitioned into a polynomial-size set of regions; each region corresponds to a unique M-phase vector. The M-phase vector that maximizes the rank-deficient quadratic form is shown to belong to the polynomial-size set of candidate vectors. Thus, the size of the feasible set is efficiently reduced from exponential to polynomial.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/en
Date of Item2015-11-10-
Date of Publication2008-
SubjectQuadratic formen
Subjectmaximizationen
Subjectmultiple-input multiple-outputen
Bibliographic Citation D. S. Papailiopoulos and G. N. Karystinos, “Efficient computation of the M-phase vector that maximizes a rank-deficient quadratic form,” in Proc. Conf. on Inform. Sc. and Syst. (CISS '08), pp. 1086-1090 doi: 10.1109/CISS.2008.4558680 en

Services

Statistics