Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Rank-deficient quadratic-form maximization over M-phase alphabet: Polynomialcomplexitysolvability and algorithmic developments

Kyrillidis Anastasios, Karystinos Georgios

Simple record


URIhttp://purl.tuc.gr/dl/dias/58DFFAC4-8C48-4E54-A0EB-5725C486F8C3-
Identifierhttps://doi.org/10.1109/ICASSP.2011.5947193-
Languageen-
Extent3en
TitleRank-deficient quadratic-form maximization over M-phase alphabet: Polynomialcomplexity solvability and algorithmic developmentsen
Creator Kyrillidis Anastasiosen
CreatorKarystinos Georgiosen
CreatorΚαρυστινος Γεωργιοςel
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryThe maximization of a positive (semi)definite complex quadratic form over a finite alphabet is NP-hard and achieved through exhaustive search when the form has full rank. However, if the form is rank-deficient, the optimal solution can be computed with only polynomial complexity in the length N of the maximizing vector. In this work, we consider the general case of a rank-D positive (semi)definite complex quadratic form and develop a method that maximizes the form with respect to a M-phase vector with polynomial complexity. The proposed method efficiently reduces the size of the feasible set from exponential to polynomial. We also develop an algorithm that constructs the polynomial-size candidate set in polynomial time and observe that it is fully parallelizable and rank-scalable.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/en
Date of Item2015-11-10-
Date of Publication2011-
Bibliographic Citation A. T. Kyrillidis and G. N. Karystinos, “Rank-deficient quadratic-form maximization over M-phase alphabet: Polynomialcomplexity solvability and algorithmic developments,” in Proc. IEEE - Intern. Conf. Acoust., Speech and Signal Proc.,(ICASSP '11) pp. 3856-3859, doi: 10.1109/ICASSP.2011.5947193 en

Services

Statistics