Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Discrete randomness in discrete time quantum walk: study via stochastic averaging

Ellinas Dimosthenis, Bracken A. J., Smyrnakis Ioannis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/51A2D41B-A39C-4A28-8CB6-DAEE8C317E01
Έτος 2012
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά D. Ellinas, A. J. Bracken and I. Smyrnakis, "Discrete randomness in discrete time quantum walk: study via stochastic averaging," Rep. Math. Phys., vol. 70, no. 2, pp. 221-227, Oct. 2012. doi:10.1016/S0034-4877(12)60041-X https://doi.org/10.1016/S0034-4877(12)60041-X
Εμφανίζεται στις Συλλογές

Περίληψη

The role of classical noise in quantum walks (QW) on integers is investigated in the form of discrete dichotomic random variable affecting its reshuffling matrix parametrized as a SU2)/U (1) coset element. Analysis in terms of quantum statistical moments and generating functions, derived by the completely positive trace preserving (CPTP) map governing evolution, reveals a pronounced eventual transition in walk's diffusion mode, from a quantum ballistic regime with rate O(t) to a classical diffusive regime with rate View the MathML source, when condition (strength of noise parameter)2 × (number of steps) = 1, is satisfied. The role of classical randomness is studied showing that the randomized QW, when treated on the stochastic average level by means of an appropriate CPTP averaging map, turns out to be equivalent to a novel quantized classical walk without randomness. This result emphasizes the dual role of quantization/randomization in the context of classical random walk.

Υπηρεσίες

Στατιστικά