Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Anyonic quantum walks

Brennen Gavin K., Ellinas Dimosthenis, Kendon Viv, Pachos, Jiannis K, Tsohantjis Ioannis, Wang Zhenghan

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/CAEB08C0-3504-4229-9BF8-C59F9EE2B758
Έτος 2010
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά G. K. Brennen, D. Ellinas, V. Kendon, J. K. Pachos, I. Tsohantjis and Z. Wang, "Anyonic quantum walks," Annal. Phys., vol. 325, no. 3, pp. 664-681, Mar. 2010. doi:10.1016/j.aop.2009.12.001 https://doi.org/10.1016/j.aop.2009.12.001
Εμφανίζεται στις Συλλογές

Περίληψη

The one dimensional quantum walk of anyonic systems is presented. The anyonic walker performs braiding operations with stationary anyons of the same type ordered canonically on the line of the walk. Abelian as well as non-Abelian anyons are studied and it is shown that they have very different properties. Abelian anyonic walks demonstrate the expected quadratic quantum speedup. Non-Abelian anyonic walks are much more subtle. The exponential increase of the system’s Hilbert space and the particular statistical evolution of non-Abelian anyons give a variety of new behaviors. The position distribution of the walker is related to Jones polynomials, topological invariants of the links created by the anyonic world-lines during the walk. Several examples such as the SU(2)k and the quantum double models are considered that provide insight to the rich diffusion properties of anyons.

Υπηρεσίες

Στατιστικά