Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Discretization of the phase space for a q-deformed harmonic oscillator with q a root of unity

Bonatsos, Dennis, Daskaloyannis C. , Ellinas Dimosthenis, Faessler, Amand

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/93CA3DC2-3E51-41FA-9D26-216776519464
Έτος 1994
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά D. Bonatsos, C. Daskaloyannis, D. Ellinas and A. Faessler, "Discretization of the phase space for a q-deformed harmonic oscillator with q a root of unity," Phys. Lett. B, vol. 331, no. 1-2, pp. 150-156, Jun. 1994. doi:10.1016/0370-2693(94)90956-3 https://doi.org/10.1016/0370-2693(94)90956-3
Εμφανίζεται στις Συλλογές

Περίληψη

The “position” and “momentum” operators for the q-deformed oscillator with q being a root of unity are proved to have discrete eigenvalues which are roots of deformed Hermite polynomials. The Fourier transform connecting the “position” and “momentum” representations is also found. The phase space of this oscillator has a lattice structure, which is a non-uniformly distributed grid. Non-equidistant lattice structures also occur in the cases of the truncated harmonic oscillator and of the q-deformed parafermionic oscillator, while the parafermionic oscillator corresponds to a uniformly distributed grid.

Υπηρεσίες

Στατιστικά