Το έργο με τίτλο A solution of steady-state fluid flow in multiply fractured isotropic porous media από τον/τους δημιουργό/ούς Liolios Pantelis, Exadaktylos Georgios διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
P. A. Liolios and G. E. Exadaktylos, "A solution of steady-state fluid flow in multiply fractured isotropic porous media," Int. J. Solids Struct., vol. 43, no. 13, pp. 3960-3982, Jun. 2006. doi:10.1016/j.ijsolstr.2005.03.021
https://doi.org/10.1016/j.ijsolstr.2005.03.021
Herein a plane, steady-state fluid flow solution for fractured porous media is first presented. The solution is based on the theory of complex potentials, the theory of Cauchy integrals, and of singular integral equations. Subsequently, a numerical method is illustrated that may be used for the accurate estimation of the pore pressure and pore pressure gradient fields due to specified hydraulic pressure or pore pressure gradient acting on the lips of one or multiple non-intersecting curvilinear cracks in a homogeneous and isotropic porous medium. It is shown that the numerical integration algorithm of the singular integral equations is fast and converges rapidly. After the successful validation of the numerical scheme several cases of multiple curvilinear cracks are illustrated.