URI | http://purl.tuc.gr/dl/dias/26FD7337-F13C-45AE-9E36-4F7BA72C09F5 | - |
Αναγνωριστικό | https://doi.org/10.1007/978-3-540-85565-1_5 | - |
Γλώσσα | en | - |
Τίτλος | Groundwater numerical modeling and environmental
design using artificial neural networks and differential evolution | en |
Δημιουργός | Nikolos Ioannis | en |
Δημιουργός | Νικολος Ιωαννης | el |
Δημιουργός | Papadopoulou Maria-Eirini | en |
Δημιουργός | Παπαδοπουλου Μαρια-Ειρηνη | el |
Δημιουργός | Maria Stergiadi | en |
Δημιουργός | George P. Karatzas | en |
Εκδότης | Springer Verlag | en |
Περίληψη | A Differential Evolution (DE) algorithm is combined with an Artificial Neural Network (ANN) to examine different operational strategies for the productive pumping wells located in the Northern part of Rhodes Island in Greece. The objective is to maximize the pumping rate without violating the environmental constraints associated with the water table drawdown at critical locations. The hydraulic head field is simulated using a groundwater flow simulator that solves numerically a system of partial differential equations. Successive calls to the simulator are used to provide the training data to the ANN. Then the ANN is used as an approximation model to the simulator, successively called by the DE algorithm to evaluate candidate solutions. The adopted procedure provides the ability to test different scenarios, concerning the optimization constraints, without retraining of the ANN, which significantly reduces the computational cost of the procedure. | en |
Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Full Paper | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2015-11-04 | - |
Ημερομηνία Δημοσίευσης | 2008 | - |
Βιβλιογραφική Αναφορά | I.K. Nikolos, M. Stergiadi, M.P. Papadopoulou, G.P. Karatzas, «Groundwater Numerical Modeling and Environmental Design Using Artificial Neural Networks and Differential Evolution», In 12th International Conference Knowledge-Based Intelligent Information and Engineering Systems (KES 2008), 2008, pp. 34-41. doi: 10.1007/978-3-540-85565-1_5 | en |