URI | http://purl.tuc.gr/dl/dias/A7BD4AE5-37F0-4F85-85D8-6C398D8FA3B0 | - |
Identifier | https://doi.org/10.1007/978-0-387-74161-1_15 | - |
Language | en | - |
Title | Mining interesting clinico‐genomic associations: The healthobs approach | en |
Creator | Moustakis Vasilis | en |
Creator | Μουστακης Βασιλης | el |
Creator | George Potamias | en |
Creator | Lefteris Koumakis | en |
Creator | Alexandros Kanterakis | en |
Creator | Dimitrsi Kafetzopoulos | en |
Creator | Manolis Tsiknakis | en |
Publisher | Spriger Verlag | en |
Content Summary | HealthObs is an integrated (Java-based) environment targeting the seamless integration and intelligent processing of distributed and heterogeneous clinical and genomic data. Via the appropriate customization of standard medical and genomic data-models HealthObs achieves the semantic homogenization of remote clinical and gene-expression records, and their uniform XML-based representation. The system utilizes data-mining techniques (association rules mining) that operate on top of query-specific XML documents. Application of HealthObs on a real world breast-cancer clinico-genomic study demonstrates the utility and efficiency of the approach. | en |
Type of Item | Πλήρης Δημοσίευση σε Συνέδριο | el |
Type of Item | Conference Full Paper | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-11-03 | - |
Date of Publication | 2007 | - |
Bibliographic Citation | G. Potamias, L. Koumakis, A. Kanterakis, V. Moustakis, D. Kafetzopoulos, and M.
Tsiknakis, "Mining Interesting Clinico‐Genomic Associations: The HealthObs
Approach", in 4th IFIP Conference on Artificial Intelligence Applications
and Innovations, 2007, pp. 137‐145, doi: 10.1007/978-0-387-74161-1_15 | el |