Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Hybrid particle swarm optimization with mutation for optimizing industrial product lines: An application to a mixed solution space considering both discrete and continuous design variable

Matsatsinis Nikolaos, Tsafarakis, Stelios, 1977-, Charalampos Saridakis, Baltas George

Simple record


URIhttp://purl.tuc.gr/dl/dias/59F05E17-25CC-4345-A6E9-FAB3B463B02B-
Identifierhttps://doi.org/10.1016/j.indmarman.2013.03.002-
Languageen-
Extent11 pagesen
TitleHybrid particle swarm optimization with mutation for optimizing industrial product lines: An application to a mixed solution space considering both discrete and continuous design variableen
CreatorMatsatsinis Nikolaosen
CreatorΜατσατσινης Νικολαοςel
CreatorTsafarakis, Stelios, 1977-en
CreatorCharalampos Saridakisen
CreatorBaltas Georgeen
PublisherElsevieren
Content SummaryThis article presents an artificial intelligence-based solution to the problem of product line optimization. More specifically, we apply a new hybrid particle swarm optimization (PSO) approach to design an optimal industrial product line. PSO is a biologically-inspired optimization framework derived from natural intelligence that exploits simple analogues of collective behavior found in nature, such as bird flocking and fish schooling. All existing product line optimization algorithms in the literature have been so far applied to consumer markets and product attributes that range across some discrete values. Our hybrid PSO algorithm searches for an optimal product line in a large design space which consists of both discrete and continuous design variables. The incorporation of a mutation operator to the standard PSO algorithm significantly improves its performance and enables our mechanism to outperform the state of the art Genetic Algorithm in a simulated study with artificial datasets pertaining to industrial cranes. The proposed approach deals with the problem of handling variables that can take any value from a continuous range and utilizes design variables associated with both product attributes and value-added services. The application of the proposed artificial intelligence framework yields important implications for strategic customer relationship and production management in business-to-business markets.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-11-03-
Date of Publication2013-
SubjectHybridization, Vegetableen
SubjectPlants--Hybridizationen
Subjectplant hybridizationen
Subjecthybridization vegetableen
Subjectplants hybridizationen
SubjectFinance, Personal--Marketingen
SubjectMarketing of financial planning servicesen
Subjectfinancial planners marketingen
Subjectfinance personal marketingen
Subjectmarketing of financial planning servicesen
Bibliographic CitationS. Tsafarakis, C. Saridakis, G. Baltas, N. Matsatsinis ," Hybrid particle swarm optimization with mutation for optimizing industrial product lines: An application to a mixed solution space considering both discrete and continuous design variables," Ind.Marketing Man.,vol.42 ,no.4,pp. 496-506,Ma. 2013.doi:10.1016/j.indmarman.2013.03.002en

Services

Statistics