Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Gaussian mixture clustering and language adaptation for the development of a new language speech recognition system

Chatzichrisafis, Nikos, Diakoloukas Vasilis, Digalakis Vasilis, Harizakis Costas

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/9E571AA5-BAA3-4B28-BEBF-B7187B634C0C
Έτος 2007
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά N. Chatzichrisafis, V. Diakoloukas, V. Digalakis and C. Harizakis, "Gaussian mixture clustering and language adaptation for the development of a new language speech recognition system," IEEE Trans. Audio, Speech, Language Process., vol. 15, no. 3, pp. 928-938, Mar. 2007. doi:10.1109/TASL.2006.885259 https://doi.org/10.1109/TASL.2006.885259
Εμφανίζεται στις Συλλογές

Περίληψη

The porting of a speech recognition system to a new language is usually a time-consuming and expensive process since it requires collecting, transcribing, and processing a large amount of language-specific training sentences. This work presents techniques for improved cross-language transfer of speech recognition systems to new target languages. Such techniques are particularly useful for target languages where minimal amounts of training data are available. We describe a novel method to produce a language-independent system by combining acoustic models from a number of source languages. This intermediate language-independent acoustic model is used to bootstrap a target-language system by applying language adaptation. For our experiments, we use acoustic models of seven source languages to develop a target Greek acoustic model. We show that our technique significantly outperforms a system trained from scratch when less than 8 h of read speech is available

Υπηρεσίες

Στατιστικά