Το έργο με τίτλο Bioinformatics of lung cancer από τον/τους δημιουργό/ούς Stefanie Marotta, Zervakis Michalis, Aditi Deshpande, Sarhan Musa, Livanos, Georges, Ying Na, Tannaz Farrahi διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
G.C.Giakos, S. Marotta, S. Shrestha, A. Deshpande, T. Farrahi, L. Zhang, T. Cambria, A. Blinzler, T. Quang, Y. Na, G. Livanos, M. Zervakis, S. Musa ,"Bioinformatics of lung canver ,"in 2015 Intern. Conf. on Imaging Syst. and Techniques (IST) ,pp,1-6.doi:10.1109/IST.2015.7294524
https://doi.org/10.1109/IST.2015.7294524
The objective of this study is to explore novel bioinformatics techniques, namely, the Polarimetric Exploratory Data Analysis (pEDA), for early identification and discrimination of precancerous and cancerous lung tissues. The outcome of this study indicates that the full-width-at half maximum (FWHM) and Dynamic Range (DR) extracted from histograms of inherent (label-free) near infrared (NIR) diffused-polarimetric reflectance signals provide an important metrics for the characterization of cancerous tissue. Application of pEDA on the acquired data has been proved an effective diagnostic tool aimed at discriminating optical information among normal, precancerous, and cancerous lung tissue samples. Therefore, it can eventually be proved a useful diagnostic tool in the early detection of Non-Small Cell Lung Cancer (NSCLC) as well as in classical cytopathology and histopathology.