Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

ARMA modeling for the diagnosis of controlled epileptic activity in young children

Zervakis Michalis, Camilleri K. P., Μιχελογιάννης Σήφης, Fabri S. G., Cassar T. A.

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/A963A309-F1AC-491B-831B-4C527016F2AE
Έτος 2008
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά T.A. Cassar, K.P. Camilleri, S.G. Fabri, M. Zervakis and S. Micheloyannis," ARMA modeling for the diagnosis of controlled epileptic activity in young children,"in 3rd International Symposium on Communications, Control and Signal Processing, 2008, pp.25-30. doi:10.1109/ISCCSP.2008.4537186 https://doi.org/10.1109/ISCCSP.2008.4537186
Εμφανίζεται στις Συλλογές

Περίληψη

Parametric models are widely used for EEG data analysis. In this experimental study an autoregressive moving average (ARMA) model was used to extract spectral features within defined frequency bands which were then used to discriminate a group of children with controlled mild epilepsy from an age- and sex-matched control group. This study differs from other published works in that it shows that this technique can be used as a biomarker to distinguish the epileptic subjects specifically when the EEG recordings of these subjects are clinically diagnosed as normal. Using the spectral features and a linear discriminant classifier a global classification score of up to 85% was achieved on our clinical data. Furthermore the results showed that epileptic children have significantly higher spectral power in frequency bands up to 45 Hz, with the largest difference occurring within the alpha band.

Υπηρεσίες

Στατιστικά