Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Biological interaction networks based on non-parametric estimation

Zervakis Michail, Kalantzaki Kalliopi, Garofalakis Minos, Bei Aikaterini

Simple record


URIhttp://purl.tuc.gr/dl/dias/F34B8740-DE74-46BC-AB89-AE5C4145B00A-
Identifierhttps://doi.org/10.1504/IJBET.2013.058539-
Identifierhttp://www.inderscience.com/info/inarticle.php?artid=58539-
Languageen-
Extent27 pagesen
TitleBiological interaction networks based on non-parametric estimationen
CreatorZervakis Michailen
CreatorΖερβακης Μιχαηλel
CreatorKalantzaki Kalliopien
CreatorΚαλαντζακη Καλλιοπηel
CreatorGarofalakis Minosen
CreatorΓαροφαλακης Μινωςel
CreatorBei Aikaterinien
CreatorΜπεη Αικατερινηel
PublisherInderscienceen
Content SummaryBiological networks are often described as probabilistic graphs in the context of gene and protein sequence analysis in molecular biology. Microarrays and proteomics technologies facilitate the monitoring of expression levels over thousands of biological units over time. Several experimental efforts have appeared aiming to unveiling pairwise interactions, with many graphical models being introduced in order to discover associations from expression-data analysis. However, the small size of samples compared to the number of observed genes/proteins makes the inference of the network structure quite challenging. In this study, we generate gene–protein networks from sparse experimental temporal data using two methods, partial correlations and Kernel Density Estimation (KDE), in an attempt to capture genetic interactions. Applying KDE method we model the genetic associations as Gaussians approximations, while through the dynamic Gaussian analysis we aim to identify relationships between genes and proteins at different time stages. The statistical results demonstrate valid biological interactions and indicate potential new indirect relations that deserve further biological examination for validation.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-24-
Date of Publication2013-
SubjectBiologyen
Bibliographic CitationK. Kalantzaki, E. S. Bei, M. Garofalakis and M. Zervakis, "Biological interaction networks based on non-parametric estimation," Intern. J. Biom. Engineering Techn., vol. 13, no.4, pp. 383-409, 2013. doi: 10.1504/IJBET.2013.058539en

Services

Statistics