Institutional Repository [SANDBOX]
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Intelligent online quality control using discrete wavelet analysis features and likelihood classification

Zervakis Michalis, Pouliezos, A.D., 1951-, Stavrakakis Georgios, Enrico Tomasini, Nicola Paone, Lorenzo Scalise

Simple record


URIhttp://purl.tuc.gr/dl/dias/612AB8B1-CE0D-47F4-836F-9EBC278FFB0E-
Identifierhttps://doi.org/10.1117/12.386766-
Languageen-
Extent12 pagesen
TitleIntelligent online quality control using discrete wavelet analysis features and likelihood classificationen
CreatorZervakis Michalisen
CreatorΖερβακης Μιχαληςel
CreatorPouliezos, A.D., 1951-en
CreatorStavrakakis Georgiosen
CreatorΣταυρακακης Γεωργιοςel
Creator Enrico Tomasinien
CreatorNicola Paoneen
Creator Lorenzo Scaliseen
Content SummaryThis paper presents a method for extracting features in the wavelet domain of vibration velocity transient signals of washing machines, that are then used for classification of the state (acceptable-faulty) of the product. The Discrete Wavelet Transform in conjunction with Statistical Digital Signal Processing techniques are used for feature extraction. The performance of this feature set is compared to features obtained through standard Fourier analysis of the stationary part of the signal. Minimum distance Bayes classifiers are used for classification purposes. Measurements from a variety of defective/non-defective washing machines taken in the laboratory as well as from the production line are used to illustrate the applicability of the proposed method.en
Type of ItemΠλήρης Δημοσίευση σε Συνέδριοel
Type of ItemConference Full Paperen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2015-10-23-
Date of Publication2000-
SubjectProjects, Physicsen
Subjectphysics projectsen
Subjectprojects physicsen
SubjectWashing machinesen
Bibliographic CitationS. Goumas, M. Zervakis, A. Pouliezos, G.S. Stavrakakis, E. P. Tomasini, N.Paone, L. Scalise ,"Intelligent online quality control using discrete wavelet analysis features and likelihood classification ,"in 2000 4th Intern.l Conf. on Vibration Meas. by Laser Techniques,pp.500-511.doi:10.1117/12.386766en

Services

Statistics