Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Proof of convergence for a gobal optimization algorithm for problems with ordinary differential equations

Ioannis Papamichail, Claire S. Adjiman

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/FBA1462B-11C5-49D8-BD95-BD4A50E8F580
Έτος 2005
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Papamichail I. and Adjiman C.S. "Proof of convergence for a global optimization algorithm for problems with ordinary differential equations", Journal of Global Optimization, Vol. 33, no. 1, pp. 83-107, Sept. 2005. DOI: 10.1007/s10898-004-6100-2 https://doi.org/10.1007/s10898-004-6100-2
Εμφανίζεται στις Συλλογές

Περίληψη

A deterministic spatial branch and bound global optimization algorithm for problems with ordinary differential equations in the constraints has been developed by Papamichail and Adjiman [A rigorous global optimization algorithm for problems with ordinary differential equations. J. Glob. Optim. 24, 1–33]. In this work, it is shown that the algorithm is guaranteed to converge to the global solution. The proof is based on showing that the selection operation is bound improving and that the bounding operation is consistent. In particular, it is shown that the convex relaxation techniques used in the algorithm for the treatment of the dynamic information ensure bound improvement and consistency are achieved.

Υπηρεσίες

Στατιστικά