Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Modeling the time-varying microstructure of simulated sleep EEG spindles using time-frequency analysis methods

Zervakis Michalis, Sakkalis, Vangelis, Xanthopoulos, Petros, Golemati, S, Ktonas, P. Y

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/98E9BC08-4815-40CA-B98E-4034BF1BFC17
Έτος 2006
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά P. Xanthopoulos, S. Golemati, V. Sakkalis, P.Y. Ktonas, M. Zervakis," Modeling the time-varying microstructure of simulated sleep EEG spindles using time-frequency analysis methods," in 2006 28th Annual Inter. Conf. of the IEEEE engin. in Medicine and Biology Society, EMBS ,pp.2438 - 2441.doi: 10.1109/IEMBS.2006.260554 https://doi.org/10.1109/IEMBS.2006.260554
Εμφανίζεται στις Συλλογές

Περίληψη

The time-varying microstructure of sleep spindles may have clinical significance and can be quantified and modeled with a number of techniques. In this paper, sleep spindles were regarded as AM-FM signals modeled by six parameters. The instantaneous envelope (IE) and instantaneous frequency (IF) waveforms were estimated using four different methods, namely Hilbert Transform (HT), Complex Demodulation (CD), Wavelet Transform (WT) and Matching Pursuit (MP). The six model parameters were subsequently estimated from the IE and IF waveforms. The average error, taking into account the error for each model parameter, was lowest for HT, higher but still less than 10% for CD and MP, and highest (greater than 10%) for WT, for three different spindle model examples. The amount of distortion induced by the use of a given method is also important; distortion was the greatest (0.4 sec) in the case of HT. Therefore, in the case of real spindles, one could utilize CD and MP and, if the spindle duration is more than 1 sec, HT as well

Υπηρεσίες

Στατιστικά