URI | http://purl.tuc.gr/dl/dias/538DD8FB-D775-48A7-910B-859FD996D229 | - |
Language | en | - |
Extent | 11 | en |
Title | Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites | en |
Creator | Katsivela E. | en |
Creator | Moore E. R. B. | en |
Creator | Maroukli D. | en |
Creator | Strömpl C. | en |
Creator | Pieper D. | en |
Creator | Kalogerakis Nikos | en |
Creator | Καλογερακης Νικος | el |
Description | Δημοσίευση σε επιστημονικό περιοδικό | el |
Content Summary | In-situ bioremediation of petroleum waste sludge in landfarming sites of Motor Oil Hellas (petroleum refinery) was studied by monitoring the changes of the petroleum composition of the waste sludge, as well as the changes in the structure of the microbial community, for a time period of 14 months. The analyses indicated an enhanced degradation of the petroleum hydrocarbons in the landfarming areas. A depletion of n-alkanes of approximately 75–100% was obtained. Marked changes of the microbial communities of the landfarms occurred concomitantly with the degradation of the petroleum hydrocarbons. The results obtained from terminal restriction fragment length polymorphism (T-RFLP) analysis of polymerase chain reaction (PCR) amplified 16S rRNA genes demonstrated that bacteria originating from the refinery waste sludge and newly selected bacteria dominated the soil bacterial community during the period of the highest degradation activity. However, the diversity of the microbial community was decreased with increased degradation of the petroleum hydrocarbons contained in the landfarms. T-RFLP fingerprints of bacteria of the genera Enterobacter and Ochrobactrum were detected in the landfarmed soil over the entire treatment period of 14 months. In contrast, the genus Alcaligenes appeared in significant numbers only within the 10 month old landfarmed soil. Genes encoding catechol 2,3-dioxygenase (subfamily I.2.A) were detected only in DNA of the untreated refinery waste sludge. However, none of the genes known to encode the enzymes alkane hydroxylase AlkB, catechol 2,3-dioxygenase (subfamily I.2.A) and naphthalene dioxygenase nahAc could be detected in DNA of the landfarmed soils. | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2015-10-18 | - |
Date of Publication | 2005 | - |
Subject | bacterial community dynamics | en |
Subject | in-situ biodegradation | en |
Subject | petroleum hydrocarbons | en |
Subject | refinery waste sludge | en |
Subject | 16S rDNA | en |
Subject | T-RFLP fingerprinting | en |
Bibliographic Citation | E. Katsivela, E.R.B. Moore, D. Maroukli, C. Strömpl, D. Pieper and N. Kalogerakis, "Bacterial community dynamics during in-situ bioremediation of petroleum waste sludge in landfarming sites," Biodegradation, vol. 16, no. 2, pp. 169-180, Mar. 2005. | en |