Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Runge-Kutta and hermite collocation for a biological invasion problem modeled by a generalized fischer equation

Saridakis Ioannis, Papadopoulou Eleni, Athanasakis Ioannis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/CE6F7BD6-4C9A-45A8-9B28-8B1FB850384F
Έτος 2013
Τύπος Πλήρης Δημοσίευση σε Συνέδριο
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά I.E. Athanassakis, E.P. Papadopoulou , Y. G. Saridakis.(2013).Runge-Kutta and hermite collocation for a biological invasion problem modeled by a generalized fischer equation.Presented at 2nd International Conference on Mathematical Modeling in Physical Sciences .[online].Available:http://www.tuc.gr/fileadmin/users_data/amcl-thalis/Images_PDFs/ICMSQUARE_FISCHER.pdf
Εμφανίζεται στις Συλλογές

Περίληψη

Fisher’s equation has been widely used to model the biological invasion of single- species communities in homogeneous one dimensional habitats. In this study we develop high order numerical methods to accurately capture the spatiotemporal dynamics of the generalized Fisher equation, a nonlinear reaction-diffusion equation characterized by density dependent non-linear diffusion. Working towards this direction we consider strong stability preserving Runge-Kutta (RK) temporal discretization schemes coupled with the Hermite cubic Collocation (HC) spatial discretization method. We investigate their convergence and stability properties to reveal efficient HC-RK pairs for the numerical treatment of the generalized Fisher equation. The Hadamard product is used to characterize the collocation discretized non linear equation terms as a first step for the treatment of generalized systems of relevant equations. Numerical experimentation is included to demonstrate the performance of the methods.

Υπηρεσίες

Στατιστικά