Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Direct and iterative solution of the generalized dirichlet–deumann map for elliptic PDEs on square domains

Saridakis Ioannis, Sifalakis Anastasios, Papadopoulou Eleni, Fulton, Ruth, 1887-1948

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/C27ABBA2-F64D-4A17-954B-3BD57289B9EF
Έτος 2009
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά A. Sifalakis, S.R. Fulton, E. P. Papadopoulou ,Y. G. Saridakis, “Direct and iterative solution of the generalized dirichlet-neumann map for linear elliptic PDEs on square domains," J, Comp. and Applied Math.,vol. 227,no.1 pp. 171-184, 2009. doi:10.1016/j.cam.2008.07.025 https://doi.org/10.1016/j.cam.2008.07.025
Εμφανίζεται στις Συλλογές

Περίληψη

In this work we derive the structural properties of the Collocation coefficient matrix associated with the Dirichlet–Neumann map for Laplace’s equation on a square domain. The analysis is independent of the choice of basis functions and includes the case involving the same type of boundary conditions on all sides, as well as the case where different boundary conditions are used on each side of the square domain. Taking advantage of said properties, we present efficient implementations of direct factorization and iterative methods, including classical SOR-type and Krylov subspace (Bi-CGSTAB and GMRES) methods appropriately preconditioned, for both Sine and Chebyshev basis functions. Numerical experimentation, to verify our results, is also included.

Υπηρεσίες

Στατιστικά