Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Quantifying uncertainty in ranking problems with composite indicators: A Bayesian approach

Moustakis Vasilis, Zabetakis Leonidas

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/25E56175-47AE-4B41-A9A4-00E2E7079DF1-
Αναγνωριστικόhttps://doi.org/0.1108/17465661011026176-
Γλώσσαen-
ΤίτλοςQuantifying uncertainty in ranking problems with composite indicators: A Bayesian approachen
ΔημιουργόςMoustakis Vasilisen
ΔημιουργόςΜουστακης Βασιληςel
ΔημιουργόςZabetakis Leonidasen
ΔημιουργόςΖαμπετακης Λεωνιδαςel
ΕκδότηςEmeralden
ΠερίληψηPurpose – The purpose of this paper is to present an inductive methodology, which supports ranking of entities. Methodology is based on Bayesian latent variable measurement modeling and makes use of assessment across composite indicators to assess internal and external model validity (uncertainty is used in lieu of validity). Proposed methodology is generic and it is demonstrated on a well‐known data set, related to the relative position of a country in a “doing business.” Design/methodology/approach – The methodology is demonstrated using data from the World Banks' “Doing Business 2008” project. A Bayesian latent variable measurement model is developed and both internal and external model uncertainties are considered. Findings – The methodology enables the quantification of model structure uncertainty through comparisons among competing models, nested or non‐nested using both an information theoretic approach and a Bayesian approach. Furthermore, it estimates the degree of uncertainty in the rankings of alternatives. Research limitations/implications – Analyses are restricted to first‐order Bayesian measurement models. Originality/value – Overall, the presented methodology contributes to a better understanding of ranking efforts providing a useful tool for those who publish rankings to gain greater insights into the nature of the distinctions they disseminate.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-10-15-
Ημερομηνία Δημοσίευσης2006-
Βιβλιογραφική ΑναφοράZampetakis, L.A. and V. Moustakis. (2010). "Quantifying uncertainty in ranking problems with composite indicators: A Bayesian approach." Journal of Modeling in Management. Vol. 5, No. 1, pp. 63‐80, doi.org/10.1108/17465661011026176en

Υπηρεσίες

Στατιστικά