Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Octane number prediction for gasoline blends

Pasadakis Nikos, Gaganis Vasileios, Foteinopoulos Charalambos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/08461378-2F3D-48EB-9553-1F54B8FD31CA
Έτος 2006
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά N. Pasadakis, V. Gaganis, Ch. Foteinopoulos, “Octane number prediction for gasoline blends”, Fuel Processing Technology, vol. 87, no. 6, Jun. 2006, pp. 505-509. doi:10.1016/j.fuproc.2005.11.006 https://doi.org/10.1016/j.fuproc.2005.11.006
Εμφανίζεται στις Συλλογές

Περίληψη

Artificial Neural Network (ANN) models have been developed to determine the Research Octane Number (RON) of gasoline blends producedin a Greek refinery. The developed ANN models use as input variables the volumetric content of seven most commonly used fractions in thegasoline production and their respective RON numbers. The model parameters (ANN weights) are presented such that the model can be easilyimplemented by the reader. The predicting ability of the models, in the multi-dimensional space determined by the input variables, was thoroughlyexamined in order to assess their robustness. Based on the developed ANN models, the effect of each gasoline constituent on the formation of the blend RON value, was revealed

Υπηρεσίες

Στατιστικά