Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Interfacial debonding in composites via mathematical programming methods; the material inclusion problem for lubricated and non-lubricated interfaces

Stavroulakis Georgios, Panagiotopoulos, P. D., 1950-, Koltsakis, Efthymios K, S.A. Georgiadis

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/A89DE3D1-FC9E-4CE7-A8C7-C083D529A9B2
Έτος 1990
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά S.A. Georgiadis, G.E. Stavroulakis, E.K. Koltsakis, P.D. Panagiotopoulos,"Interfacial debonding in composites via mathematical programming methods; the material inclusion problem for lubricated and non-lubricated interfaces," Comp. and Struct.s vol. 34, no. 5, pp. 735–752,1990.doi: 10.1016/0045-7949(90)90142-O https://doi.org/10.1016/0045-7949(90)90142-O
Εμφανίζεται στις Συλλογές

Περίληψη

Debonding at the interfaces between the matrix and the material inclusions in composites is strongly nonlinear and is the main cause of the nonlinear behaviour of composite materials. The main difficulty in solution of debonding problems is that one does not know a priori the contact and noncontact regions and this inherent high nonlinearity prevents the effective use of a classical structural analysis approach. These problems are usually formulated as variational inequality problems which in the case of elastic matrix-elastic (or rigid) inclusion problems are equivalent to certain inequality constrained quadratic programming problems. Clear distinction is made between lubricated and non-lubricated interfaces, i.e. free and zero tangential sliding, respectively, and algorithms for both cases are given. These problems are solved by means of an appropriately modified optimization algorithm. The influence of some material parameters on debonding is shown.

Υπηρεσίες

Στατιστικά