Ιδρυματικό Αποθετήριο [SANDBOX]
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Efficient neural network models for structural reliability analysis and identification problems

Nikos Lagaros , Yiannis Tsompanakis, Georgios E. Stavroulakis

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/E955958B-0F2C-47D0-8B74-655247879720-
Αναγνωριστικόhttps://doi.org/10.4203/ccp.82.41-
Γλώσσαen-
Μέγεθος24 pagesen
ΤίτλοςEfficient neural network models for structural reliability analysis and identification problemsen
ΔημιουργόςNikos Lagaros en
ΔημιουργόςYiannis Tsompanakisen
ΔημιουργόςGeorgios E. Stavroulakisen
ΠερίληψηThe objective of this paper is to investigate the efficiency of soft computing methods, in particular methodologies based on neural networks, when incorporated into the solution of computationally intensive engineering problems. Two types of applications have been investigated, namely flaw identification and structural reliability analysis. Artificial neural networks (ANNs) based metamodels are used in order to replace the time-consuming repeated structural analyses. The back propagation algorithm is employed for training the ANN, using data derived from selected analyses. The trained ANN is then used to predict the values of the necessary data. The numerical tests demonstrate the computational advantages of the proposed methodologies. en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2015-10-08-
Ημερομηνία Δημοσίευσης2005-
Θεματική Κατηγορίαengineering problemsen
Βιβλιογραφική ΑναφοράY. Tsompanakis, N. D. Lagaros,G. E. Stavroulakis ,"Efficient neural network models for structural reliability analysis and identification problems," in 2005 Eighth Intern. Conf. on the App. of Artificial Intelli.e to Civil, Struct. and Envir. Engin.,pp.1-24.doi :10.4203/ccp.82.41en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά