| URI | http://purl.tuc.gr/dl/dias/7038C30C-258D-4733-8D5F-AD6C2204A002 | - |
| Identifier | https://doi.org/10.1137/S106482750240265X | - |
| Language | en | - |
| Extent | 37 pages | en |
| Title | Spartan gibbs random field models for geostatistical applications | en |
| Creator | D.T. Hristopulos | en |
| Publisher | SIAM | en |
| Content Summary | The inverse problem of determining the spatial dependence of random fields from an experimental sample is a central issue in Geostatistics. We propose a computationally efficient approach based on Spartan Gibbs random fields. Their probability density function is determined by a small set of parameters, which can be estimated by enforcing sample-based constraints on the stochastic moments. The computational complexity of calculating the constraints increases linearly with the sample size. We investigate a specific Gibbs probability density with spatial dependence derived from generalized gradient and Laplacian operators, and we derive permissibility conditions for the model parameters. | en |
| Type of Item | Peer-Reviewed Journal Publication | en |
| Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
| License | http://creativecommons.org/licenses/by/4.0/ | en |
| Date of Item | 2015-09-25 | - |
| Date of Publication | 2003 | - |
| Subject | Greek mathematics | en |
| Subject | mathematics greek | en |
| Subject | greek mathematics | en |
| Bibliographic Citation | D.T. Hristopulos," Spartan gibbs random field models for geostatistical applications ", J. on Sc. Comput., vol. 24 ,no. 6, pp. 2125-2162,2003. doi:10.1137/S106482750240265X | en |