Το έργο με τίτλο Spartan gibbs random field models for geostatistical applications από τον/τους δημιουργό/ούς D.T. Hristopulos διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
D.T. Hristopulos," Spartan gibbs random field models for geostatistical applications ", J. on Sc. Comput., vol. 24 ,no. 6, pp. 2125-2162,2003. doi:10.1137/S106482750240265X
https://doi.org/10.1137/S106482750240265X
The inverse problem of determining the spatial dependence of random fields from an experimental sample is a central issue in Geostatistics. We propose a computationally efficient approach based on Spartan Gibbs random fields. Their probability density function is determined by a small set of parameters, which can be estimated by enforcing sample-based constraints on the stochastic moments. The computational complexity of calculating the constraints increases linearly with the sample size. We investigate a specific Gibbs probability density with spatial dependence derived from generalized gradient and Laplacian operators, and we derive permissibility conditions for the model parameters.